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Preface

These notes cover the material of the first term of Algebraic Topology IV. The central
goal is the construction of the homology groups of a space, and to establish their main
properties along with a few applications and computations. You will go deeper into the
theory in the second term where you shall also meet cohomology. Along with the notes
here, I can suggest Armstrong [Arm] as a gentle introduction to some of the earlier areas
we will see (and as a refresher on some point-set topology); see it for a nice account
of simplicial homology and a hands-on approach to proving its homotopy invariance.
Hatcher’s book [Hat] must be recommended: it is nicely written, comprehensive and
even freely available online. There are plenty of other good classical texts that you can
head to, see Spanier [Spa], Fulton [Ful], Dold [Dol] or Bredon [Bre]. I suggest taking a
look around.

In places these notes are more descriptive, but less concise than they could be. Because
this entails a longer set of notes, I shall also provide a more typical distilled version
which may be more to your taste in learning the subject, or perhaps used in conjunction
with these notes which can then be read when you need the extra detail.

The introduction is there just for initial motivation to the subject—in particular, I won’t
expect knowledge of the homotopy groups in this term (except for a basic understanding
of the fundamental group for the Hurewicz Theorem at the notes). The rest of the
material can be read linearly, although sometimes results are stated before we have the
tools to prove them, which we then return to later. Sometimes where technical details
could get in the way of an otherwise simple idea, I have moved them to the appendix.
These are there for your interest and completeness but, as for the introduction, these will
not constitute details I expect for you to necessarily have internalised. The exception is
the proof of the Snake Lemma, which I have hidden in the appendix to give you space
to work out the proof on your own first.

A previously undefined term will appear in bold within the text when its definition
appears nearby. Concepts which either are to be defined later on, or are being described
but without necessarily implying that they are central to the course, will sometimes
appear in italics.

Some but not all of the homework exercises can be found within the text. Usually the
notes’ exercises will be easier, they are intended to be thought about whilst reading
through the notes. Often they will indicate an idea that will be helpful in thinking
about a recently introduced topic, or sometimes even ask for a proof of a result to be
used later.

All illustrations were produced by the author on Inkscape.

Finally: feedback, suggestions or criticisms on the notes is encouraged!
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Round-up of important notation

• N the natural numbers (not including zero), N0 the natural numbers including
zero, Z the integers, Q the rational numbers, R the real numbers, C the complex
numbers. The cyclic group Z{nZ of order n is denoted Z{n.
• 0 sometimes means zero, and sometimes means the trivial group of one element,

the context making which clear.
• I “ r0, 1s the unit interval.
• Sn the n-sphere.
• Dn the n-disc.
• f : X Ñ Y a morphism f with domain X and codomain Y .
• A ãÑ B, an inclusion morphism of A into B.
• A � B, a surjection from A to B (rarely used. Will usually denote a quotient

map).
• x ÞÑ y is read ‘x maps to y’ when discussing the definition of a function.
• g ˝ f the composition of f followed by g.
• f´1 the inverse of a morphism f .
•
š

αXα the disjoint union of spaces Xα, written X
š

Y for just two spaces.
• X ˆ Y the product of spaces X and Y .
• X{ „ the quotient space of X under the equivalence relation „.
• X{A the quotient space of X given by collapsing the subspace A Ď X to a point.
• X – Y , the spaces X and Y are homeomorphic.
• f » g, the maps f and g are homotopic.
• X » Y , the spaces X and Y are homotopy equivalent.
• G – H, the groups G and H are isomorphic.
•
À

αGα the direct sum of groups Gα, written G‘H for just two groups.
• C˚, and variants, indicate a chain complex.
• H˚ homology, occasionally H˚pCq to mean the homology of the chain complex
C˚.
• f7 chain map, sometimes written pfnq.
• f˚ indicates an induced map on homology of some chain map.
• H˚pKq the simplicial homology of a simplicial complex K, H˚pXq the singular

homology of a space X, H˚pX
‚q the cellular homology of a CW complex X‚,

H˚pX,Aq the relative homology of a pair of spaces pX,Aq, rH˚pXq the reduced
homology of a space X (in short, what H˚p´q is depends on what we put into the
brackets).
• æj restriction to index j face, with identification of that face with standard sim-

plex.
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Chapter 0

Introduction

0.1 What is topology?

Topology is the study of abstract spaces which restricts attention to attributes which
remain invariant under deformation. It cares not for angles or lengths, but for more
‘rugged’ features. For example, any loop inscribed on the surface of a ball can always
be shrunk to a point within that surface, whereas on a torus there are plenty of non-
trivial loops which cannot be pulled tight—the same is true for any torus, whether it
looks more like the surface of a doughnut or the surface of a coffee cup. The fact that

fl –

Figure 0.1.1: The 2-sphere, the 2-torus and a coffee mug, whose surface is homeomorphic to
the 2-torus.

spaces are allowed to be freely deformed may at first seem like a weakness. If one is
building a bridge, one cares about angles and lengths! But for some problems, it is
natural to strip away some of the geometry to get to the heart of the matter. In finding
a path crossing each of the bridges of Königsburg only once, the lengths of the bridges
are irrelevant, all that matters is how many bridges there are and how they connect
to each other. If you are investigating how a string is knotted, it doesn’t matter what
the length of the string is or exactly how you choose to embed it in space. If you want
to know what kinds of vector fields (think of wind currents) you can have flowing on a
surface, you can determine a lot without the exact proportions of the surface, but just
its topological shape.
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The utility of topology is not just in thinking about things which are obviously geomet-
ric already such as, say, asking how a string is knotted or what the shape of the universe
might be. Often collections of mathematical objects naturally hold a geometry. Alge-
braic geometry, for example, studies the solutions to algebraic equations by arranging
them into a moduli space of solutions. The solutions of differential equations can also
sometimes be considered geometrically. One may wish to consider the state space of
a physical system, perhaps shedding light on the types of energy functions it can sup-
port. To accurately plan the movement of a robot’s arm or how goods are transported
automatically around a warehouse, one considers ‘configuration spaces’. An intriguing
recent development is the study of large data sets topologically, so as to determine more
qualitative rather than quantitative features, using tools such as persistent homology.
Topology has for some time been a crucial component to many pure mathematicians’
tool-kits, and increasingly now it finds uses within applied mathematics too.

0.2 What is algebraic topology?

By considering a geometric object merely topologically, one can simplify the setting of
a problem at the cost of loosing some geometric information. In algebraic topology one
goes further by applying tools which forget some topological information in return for
algebraic information. These associated algebraic objects can sometimes be computed,
or implemented in other theoretically useful ways. If one is lucky, enough information
is retained to solve your problem.

As a rather crude example, one may associate to a space X the number of its path-
connected components. This loses a lot of information! But we may usually quite easily
compute this number, and if we find that two spaces have a different number of path
components then we can be sure that they are different spaces.

A less trivial example (which in a sense naturally follows the above one as the next
member of a family of invariants) is the fundamental group π1pXq, which you likely met
in the module Topology III. To slightly simplify, the fundamental group is determined
by ‘loops’ in your space, maps f : S1 Ñ X, where S1 is the circle (considered up to
homotopy). For example, for S2 the 2-sphere we have that π1pS

2q is the trivial group
consisting of one element, since all loops can be pulled tight to a ‘constant’ loop, but for
the torus T2 we have that π1pT2q – Z2, two generators may be given as a loop around
the meridian of the torus, and around its longitude. By passing to the fundamental
group we still lose information, two different spaces can quite easily have isomorphic
fundamental groups. The tools of algebraic topology can often be used to distinguish
spaces, but less often can they be used to show that two spaces are the same.

One is often interested not only in spaces, but also in continuous maps between spaces.
The tools of algebraic topology are usually functorial (see Section 1.1). As a result, one
of these gadgets not only assigns spaces X and Y algebraic objects F pXq and F pY q, it
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also assigns to a continuous map f : X Ñ Y a homomorphism f˚ : F pXq Ñ F pY q. This
can be useful in ruling out the existence of particular kinds of maps between spaces, as
we shall see shortly in the proof of Brouwer’s Fixed Point Theorem.

0.3 Homotopy and homology groups

Many spaces that one encounters can be built by glueing together ‘cells’: points, line-
segments, discs, 3-dimensional balls, and their higher dimensional analogues. These
spaces are called CW-complexes (see Section 1.2.1). It turns out that the fundamental
group π1pXq of such a space does not ‘see’ the effect of adding cells above dimension
two. So whilst π1pXq is an important invariant, it isn’t too much good in isolation
especially in analysing higher dimensional spaces.

There is a higher dimensional notion of a ‘loop’ in a space. Let Sn be the n-sphere, the
set of points in Rn`1 distance 1 from the origin. We could take an n-dimensional loop
to mean a mapping f : Sn Ñ X. For example, for n “ 1 you’re just mapping the circle
into your space as before in the fundamental group, and for n “ 2 you would consider
how one may map the 2-sphere into X, in particular whether you can do it in a way so
as to ‘catch’ some hole in the space from which you cannot pull the sphere away.

This idea can be carried through and be used to define important invariants πnpXq
called the homotopy groups of X. The homotopy groups are an incredibly powerful
tool for distinguishing spaces. Unfortunately, it is often the case that they are very
difficult to compute. It is a major problem in algebraic topology, for example, to
calculate the homotopy groups of the n-spheres, which are centrepiece in the study of
homotopy theory.

Much of our attention in this term will be devoted to defining and studying the homol-
ogy groups of a space. For each topological space X and n P Zě0 one has the degree n
homology group, denoted HnpXq, which is an Abelian group. The nth homotopy group
πnpXq is defined via probing the space X with n-dimensional spheres. In a loose sense,
the nth homology group HnpXq may still be thought of as considering ways in which
certain n-dimensional objects sit inside X, but unfortunately the definition is more com-
plicated, certainly more so than for the definition of the homotopy groups. One refund
for this effort, though, is that the homology groups are often readily computable.

0.4 The Brouwer Fixed Point Theorem, using ho-

mology as a ‘black box’

To see the power of these techniques, we close this introduction by giving a proof of the
famous Brouwer Fixed Point Theorem using homology. Of course, we have not defined
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homology yet, and have barely even attempted to describe it! However, one rarely
uses the definition of homology directly, rather than its useful properties. Below are
the properties that we shall use, where ‘homology’ should be interpreted as ‘singular
homology’ (in fact, reduced singular homology if one is being picky, so that points 2
and 3 apply for n “ 0):

1. ‘functorality’ (see Definition 1.1.2, Lemma 3.3.4):

• for a space X and n P Zě0 we have an Abelian group HnpXq;

• for a continuous map f : X Ñ Y we have induced homomorphisms
f˚ : HnpXq Ñ HnpY q;

• the identity map id: X Ñ X induces identity homomorphisms
id˚ : HnpXq Ñ HnpXq;

• for two continuous maps f : X Ñ Y and g : Y Ñ Z, we have that pg ˝ fq˚ “
g˚ ˝ f˚;

2. the homology groups HnpXq of a contractible space X are trivial in each degree
(see e.g., Theorem 3.3.1 and Exercise 1.2.5);

3. the degree n homology group HnpS
nq of the n-sphere is isomorphic to Z (see

Theorem 4.4.2).

Theorem 0.4.1 (Brouwer Fixed Point Theorem). Let n ě 1 and X be homeomorphic
to the closed n-disc Dn. Any continuous map f : X Ñ X has a fixed point i.e., there
exists x P X with fpxq “ x.

In the above theorem the closed n-disc Dn is the space of points tx P Rn | |x| ď 1u
of Rn of distance at most 1 from the origin. As a rather visual example, consider a
mug filled with coffee. The space X that the coffee occupies, cylindrical in shape, is
homeomorphic to D3 (unless you have a more jazzy kind of mug). Stirring the coffee
and then setting it to rest, logging where each point moves from and to after stirring,
one gets a map f : X Ñ X. The above theorem says that there is always a point x in
the coffee which returns to its original location after stirring! If you tried to defy the
theorem by stirring x to a different location then this guarantees that at least one other
point y will now be in its original location. In reality, of course, the coffee consists of
particles and is not a continuous medium. But it consists of so many particles that it
is quite accurately modelled by a continuous medium, and two nearby particles will be
stirred to relatively nearby locations, unless one causes splashes, so the stirring is still
accurately modelled by a continuous map.

Proof of Brouwer Fixed Point Theorem. Firstly, we may as well take X as the n-disc
Dn itself; if the result holds for Dn it holds for any homeomorphic space. Indeed,
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suppose that h : X Ñ Dn is a homeomorphism and f : X Ñ X. Then h ˝ f ˝ h´1 has
some fixed point x P Dn, so f has a fixed point hpxq.

The proof will follow from the properties of homology listed above, and one trick:
supposing that there exists a map on Dn without fixed point, we claim that there
must exist a retraction of Dn to its boundary sphere Sn´1 Ď Dn, that is, a continuous
map r : Dn Ñ Sn´1 for which rpxq “ x for all x P Sn´1. To construct this map,
consider the half-infinite ray rf pxq travelling from (but not including) fpxq through
x, which is well-defined since we are assuming that fpxq ‰ x. Define rpxq to be the
point of intersection of rf pxq with Sn´1. Since f is continuous, the rays rf pxq and
their intersections with Sn´1 vary continuously too, and for x P Sn´1 we clearly have
that rpxq “ x. So now we need only show that such a map r cannot exist. Consider

fpxq

x

rf pxq

rpxq

Figure 0.4.1: Defining retraction r : Dn Ñ Sn´1.

the identity map id: Sn´1 Ñ Sn´1. We may factorise it as id “ r ˝ i, where i is the
inclusion map i : Sn´1 Ñ Dn and r : Dn Ñ Sn´1 is the retraction we constructed above.
Applying homology in degree n ´ 1 we have that id˚ “ pr ˝ iq˚ “ r˚ ˝ i˚ by item 1
on the functorality of homology. Since Dn is contractible its homology is trivial in
degree pn´ 1q by item 2 above, and by item 3 we have that Hn´1pS

n´1q – Z. Applying
homology in degree pn´ 1q to the commutative diagram of spaces and maps id “ r ˝ i
thus leads to the following commutative diagram of groups and homomorphisms:

Sn´1 Sn´1 Z Z

Dn 0

id

i

id˚

i˚

apply

Hn´1p´qr r˚

(see the next section on commutative diagrams; here it just means that following the
top arrows from left to right is the same as the composition going down-right, then
up-right). However, again by functorality, the map id˚ should be the identity map
x ÞÑ x on Z. The only map which can factor through the trivial group as in the above
diagram is the trivial map x ÞÑ 0. This is a contradiction, and so the retraction r, and
hence the map f without fixed points, cannot exist.

9



Chapter 1

Some foundations

1.1 Basic category theory

1.1.1 Categories and examples

Definition 1.1.1. A category C consists of a class ObC of objects and a class HomC
of morphisms. A morphism f P HomC has some domain X P ObC and codomain
Y P ObC, denoted f : X Ñ Y . For f : X Ñ Y and g : Y Ñ Z there must be defined
a composition g ˝ f : X Ñ Z in HomC. We require the following two properties, of
identities and associativity, respectively:

• for each object X P ObC there is an identity morphism idX : X Ñ X, a mor-
phism satisfying f˝idX “ f and idX ˝g “ g for any f : X Ñ Y and any g : Y Ñ X;

• for f : W Ñ X, g : X Ñ Y and h : Y Ñ Z we have that ph ˝ gq ˝ f “ h ˝ pg ˝ fq.

Exercise 1.1.1. Show that for any category C identities are unique, that is, there is
precisely one identity morphism for each object.

We’ll list below some examples of categories. Many of them we will not need again (so
don’t go out of your way trying to commit them to memory!), but they should help to
clarify the concept:

Example 1.1.1. One of the most important categories is Set, the category of sets.
Its objects ObSet are all sets, and the morphisms HomSet are simply functions between
sets. Identity morphisms idS : S Ñ S are the functions idSpsq “ s for all s P S.
Composition is defined by standard function composition: if f : AÑ B and g : B Ñ C,
then g ˝ f : AÑ C is defined as the function with g ˝ fpaq– gpfpaqq for a P A.
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Example 1.1.2. There is a category Grp of groups, with objects all groups and mor-
phisms group homomorphisms between them. There is another Ab whose objects are
just the Abelian groups, with morphisms group homomorphisms. Similarly there is a
category of vector spaces and linear maps, of rings and ring homomorphisms, of R-
modules and R-module homomorphisms, of semigroups and semigroup homorphisms,
of . . . .

Example 1.1.3. For any particular set S we have the (rather boring) category with
ObC “ S and only identity morphisms idx : xÑ x for each x P S.

Example 1.1.4. One may quite easily write down finite categories. One simple example
is the category of two objects A and B, with single non-identity morphism f : AÑ B.
There are no choices as to the composition rule here: any valid composition in this
category involves an identity morphism (e.g., f ˝ idA “ f).

The composition rule is not always uniquely defined from the objects and morphisms
though, the composition rule is part of the data defining a category. For instance,
consider again a category with two objects A and B, but three non-identity morphisms
(so five including identities): f1 : A Ñ B, f2 : B Ñ A and g : B Ñ B. The category is
not uniquely defined by this data, one also needs the composition rule:

Exercise 1.1.2. Find two different categories for the example above of two objects
with three non-identity morphisms. Also find a non-example with a composition rule
which satisfies identities but not associativity.

Example 1.1.5. Let pS,ďq be a partially ordered set, so that some elements x, y P S are
related, written x ď y, in a way which is reflexive (x ď x for all x P S), antisymmetric
(x ď y and y ď x implies that x “ y) and transitive (x ď y and y ď z implies that
x ď z). There is a category naturally associated to this, with objects ObC “ S and
precisely one morphism f : xÑ y whenever x ď y.

Exercise 1.1.3. There is only one possible composition rule for the above example.
Check that this indeed defines a category.

Example 1.1.6. An important category for us will be the category Top with objects
topological spaces and morphisms given by continuous maps. Composition of maps is
defined in the usual way; note that a composition of continuous maps is continuous
and identity maps are always continuous. There is also a category Top˚ of pointed
topological spaces (given by a pair of a topological space X and point x P X), with
morphisms continuous maps between spaces preserving base points. One can also define
a category Top2 of pairs of topological spaces pX,Aq with A a subspace of X. A
morphism in this category between pairs pX,Aq and pY,Bq is given by a continuous
map f : X Ñ Y with fpAq Ď B. Analogously there is a category Topn for any n P N.

11



Also important is the homotopy category hTop whose objects are still topological
spaces but with morphisms homotopy classes of continuous maps (see Section 1.2).
Lemma 1.2.1 shows that composition is well-defined in this category.

Example 1.1.7. We may think of a single particular group G as its very own category,
consisting of a single object ˚ and one morphism g : ˚ Ñ ˚ for each group element g P G.
Composition is defined by the multiplication rule in G: we define g ˝ h– g ¨ h.

In this category every morphism is invertible, otherwise known as being an isomor-
phism, that is, for any morphism f : AÑ B there exists some morphism f´1 : B Ñ A
(called the inverse of f) with f´1 ˝ f “ idA and f ˝ f´1 “ idB. A category consisting
of a set of only invertible morphisms and a single object defines a group, by taking as
elements the set of morphisms and defining multiplication according to the composition
rule (Exercise: show that this does in fact result in a group). Generalising this, a neat
definition of a ‘groupoid’, if you’ve heard of one, is a category with a set of morphisms
which are all invertible.

Example 1.1.8. When we meet them (in Chapter 2), the chain complexes with chain
maps as morphisms form a category Ch.

Example 1.1.9. For any category C we can form its opposite category Cop. We define
ObCop – ObC but ‘flip’ the morphisms: we take one morphism f op : Y Ñ X for each
f : X Ñ Y . Composition of functions is defined from composition in C in the obvious
way.

A diagram in a category C is a graph with nodes labelled by objects of C and (oriented)
edges labelled by morphisms of C, in a way so if an edge is labelled by a morphism
f : X Ñ Y then the tail of that edge is labelled by X and the head is labelled by Y .
Such a diagram is called a commutative diagram if any two paths around the graph
with the same origin and terminal nodes are such that their corresponding compositions
of morphisms agree.

For example, the following diagram

A C

B

h

f g

is commutative precisely when h “ g ˝ f : going straight from A to C should be the
same as following f then g. You should be able to convince yourself that the following
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(quite randomly chosen) diagram

A1 B1

A2 B2 C2

A3 B3 C3 D3

f1

h1
α

f2

h2

g2

β
γ

f3 g3 ζ

is commutative precisely when f2 ˝ h1 “ α, g3 ˝ β “ γ and β ˝ g2 ˝ f2 “ f3 ˝ h2.

Exercise 1.1.4. Consider a diagram in some category of the following shape, where f
is an isomorphism:

A

B C

D

f

–

Show that this diagram is commutative if and only if the similar diagram with the arrow
f replaced with its inverse is also commutative. See Example 1.1.7 for the definition of
an isomorphism in a category and its inverse. The inverse f´1 is uniquely defined by a
later Exercise 1.1.6.

Exercise 1.1.5. Don’t assume that the behaviour above works for all shapes of dia-
grams though. Find a commutative diagram in some category (for example, in Ab)
where one edge is an isomorphism but the diagram given by flipping that edge, labelling
it instead with f´1, is not commutative.

1.1.2 Maps between categories: functors

There is a natural notion of a morphism between two categories:

Definition 1.1.2. Let C and D be two categories. A (covariant) functor from C to
D assigns to each object X P ObC an object F pXq P ObD and to each morphism
f : X Ñ Y in HomC a morphism F pfq : F pXq Ñ F pY q in HomD. The following axioms
of identities and composition, respectively, must be satisfied:

• an identity morphism idX of C is sent to the identity morphism idF pXq “ F pidXq
in D;

• for f : X Ñ Y and g : Y Ñ Z in HomC, we have that F pg ˝ fq “ F pgq ˝ F pfq.
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Suppose that you have a commutative diagram over a category C and a functor F from
C to D. Then applying F to the diagram we also get a commutative diagram in D of
the same shape, by replacing an object A P ObC labelling a node with F pAq P ObD, and
a morphism f P HomC labelling an edge by F pfq P HomD (quickly think about why
this diagram is still commutative). Compare with the pair of diagrams in the proof of
Brouwer’s Fixed Point Theorem (Theorem 0.4.1) in the introduction.

Example 1.1.10. Interestingly, with the notion of a functor as a morphism, the cate-
gories themselves form a category! That is, we have a category1 Cat with objects the
categories and morphisms functors between categories. Exercise: check that this does
define a category.

Exercise 1.1.6. Recall the definition of an isomorphism in a category from Exam-
ple 1.1.7. Show that the inverse of an isomorphism in a category is uniquely defined.
Moreover, show that if f´1 is the inverse of f and F is a functor, then F pfq is an
isomorphism with inverse pF pfqq´1 given by F pf´1q.

Example 1.1.11. We may associate to any group its underlying set, and to any homo-
morphism between groups the function between their underlying sets. This defines a
functor F : Grp Ñ Set. For the category Ring of rings and ring homomorphisms, we
could forget about the multiplicative structure keeping just the addition to get a group,
defining a functor F : Ring Ñ Grp, or we could forget about the group structure too
getting a functor F : Ring Ñ Set. We have a similar functor F : Top Ñ Set. Functors
like this are sometimes called forgetful functors.

Example 1.1.12. I feel that it is quite instructive to visualise a category as a network
of nodes (the objects) and arrows (the morphisms). There is a functor which realises
this2. Let F be the functor from Cat to Grph, the category of directed graphs, which
sends a category C to the graph with nodes the objects of C and one arrow for each
morphism f of C, with tail and head corresponding to the domain and codomain of f ,
respectively. This is also forgetful functor, in the sense that one may think of a category
as a directed graph with the extra structure of a composition rule.

Example 1.1.13. Recall from Example 1.1.7 how we associated to a groupG a category
(let’s call it G). Such a category has just one object and morphisms in bijection with

1For those interested, there is also a notion of a map between functors, called a natural transfor-
mation. That is, one has a notion of maps between categories (functors) and maps between maps of
categories (natural transformations). One may consider how to continue this process, leading to the
subject of higher category theory.

2Technically here we should restrict to so-called small categories, so that the objects and morphisms
form a set rather than a class (this avoids set-theoretic issues, such as Russell’s Paradox which occurs
when one tries to define the collection of all sets as itself a set). I would rather ignore these size issues
here though.
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the group elements. So a function f : GÑ H induces a function F : HomG Ñ HomH in
the obvious way. Exercise: by sending the single object of G to that of H, show that
this defines a functor F : G Ñ H if and only if f is a group homomorphism.

Similarly, we associated to a partially ordered set a category. Show how order-preserving
functions between partially ordered sets precisely correspond to functors between their
associated categories.

Exercise 1.1.7. Show that a functor F : G Ñ Set, where G is the one object category
associated to a group, corresponds precisely to a group action on a set. Recall that an
action of G on a set S is an assignment g ¨ s P S for all g P G and s P S, with e ¨ s “ s
for all s P S (and e the identity of G) and pghq ¨ s “ g ¨ ph ¨ sq for all g, h P G and s P S.

Example 1.1.14. For each n P Zě0 taking the nth homotopy group defines a functor3

from Top˚ to Grp. In particular, whenever one has a continuous map f : X Ñ Y
preserving base-points, one gets a group homomorphism f˚ : πnpX, x0q Ñ πnpY, y0q.

We shall see later how, for each n P Zě0, taking the degree n homology HnpXq defines
a functor from Top to the category Ab of Abelian groups. As is the case for the
homotopy groups, induced homomorphisms are invariant under homotopy, so taking
homology even defines a functor from the homotopy category hTop to Ab.

Remark 1.1.1. Recall that to a category C one may associate its opposite Cop, which
is given by flipping the rôles of the domains and codomains of morphisms. A functor
F : Cop Ñ D is called a contravariant functor from C to D. Explicitly, such a thing still
defines a map F : ObC Ñ ObD and sends morphisms of HomC to HomD. But it now
reverses the directions of arrows: a contravariant functor sends a morphism f : X Ñ Y
to F pfq : F pY q Ñ F pXq. It must still send compositions to (flipped) compositions and
identities to identities.

Our functors will be covariant rather than contravariant in this term, so we shall drop
that adjective in these notes. The definition of a contravariant functor may at first
seem unnatural. But there are many important examples of them (loosely speaking,
one often finds contravariant functors in situations where quantities “pull back”, such
as vector bundles under continuous maps, rather than “push forward”). One simple
example is given by taking the dual of a vector space, which defines a contravariant
functor F : Vect Ñ Vect on the category of vector spaces and linear maps. Indeed a
linear map f : V Ñ W defines a dual linear map f̂ : Ŵ Ñ V̂ between the dual vector
spaces (think of matrix transposition). Another important example of a contravariant
functor is cohomology, which you will meet in the next term. For n P Zě0 it assigns to

3Again, a remark just for outside interest: one way of avoiding pointed topological spaces for π1p´q
is to consider instead the so-called ‘fundamental groupoid’. This removes the need for base-points, and
defines the fundamental groupoid functor Π1 from Top to the category Grpd of groupoids.
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a topological space X an Abelian group HnpXq and to a continuous map f : X Ñ Y a
group homomorphism f˚ : HnpY q Ñ HnpXq.

1.2 Homotopy theory

Let I – r0, 1s be the unit interval in R. This is probably the most important space in
homotopy theory! A close runner up might be the n-sphere (for n P N0):

Sn – tx P Rn`1
| |x| “ 1u.

That is, the n-sphere is the set of points of Rn`1 unit distance from the origin. For
example, S0 “ t´1,`1u is a disconnected two point space, S1 is the circle and S2 is
the surface of a ball.

Whilst S3 most naturally sits in R4—so one might expect it being hopeless to try to
visualise it—in fact one can think of S3 topologically as given by usual 3d space R3

with an extra point ‘at infinity’ (and in general Sn as Rn ‘compactified with a point at
infinity’ c.f., Exercise 1.2.1 below).

The pn´ 1q-sphere is the boundary of the n-disc, defined as:

Dn – tx P Rn
| |x| ď 1u.

The disjoint union of a collection of spaces Xα is denoted by
š

αXα, or just as X
š

Y
for two spaces X and Y . For example, S0 may be constructed as the disjoint union
˚
š

˚ of two copies of the one point space ˚. This operation is sometimes known as the
co-product for category theoretic reasons that I won’t get into.

I will expect you to be comfortable with the concept of a continuous map f : X Ñ

Y between topological spaces X and Y . Functions between spaces will always be
continuous, so we just use the word ‘map’ rather than continuous map. I will also
expect you to know about productsXˆY of spaces and quotient spaces/maps. Given an
equivalence relation „ on a space X, there is an associated quotient map q : X Ñ X{ „
which glues together points in X identified via „. The standard example is that we
can form the torus as a quotient of the unit square r0, 1sˆ r0, 1s by identifying opposite
sides of the square, as in Figure 1.2.1.

One often defines the quotient space which collapses all of the points of a subspace
A Ď X to a single point, it is denoted X{A.

For any space X we have the identity map idX : X Ñ X defined by idXpxq “ x. Two
spaces X and Y are homeomorphic, written X – Y , if there exists a continuous
map f : X Ñ Y which has a continuous inverse f´1 : Y Ñ X (f´1 ˝ f “ idX and
f ˝ f´1 “ idY ). We should think of homeomorphic spaces as basically being ‘the same’,
up to perhaps a different naming convention for their points.
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Figure 1.2.1: Glueing the 2-torus from I2.

Exercise 1.2.1. Show that Sn – Dn{Sn´1. That is, the n-sphere is homeomorphic to
an n-disc with its boundary collapsed to a point. Conclude that Sn´txu – Rn for any
point x P Sn.

It is difficult make progress in trying to distinguish spaces up to homeomorphism. In
fact, I think it’s fair to say that it is usually more interesting to study them up to a
weaker notion of equivalence. Enter homotopy theory:

Definition 1.2.1. Two maps f , g : X Ñ Y are called homotopic if there exists a
homotopy F : X ˆ r0, 1s Ñ Y between them, a map for which F px, 0q “ fpxq and
F px, 1q “ gpxq for all x P X. In this case we write f » g.

A more dynamical way of thinking about a homotopy is that we have a continuously
parametrised family of maps Ft, each given by x ÞÑ F px, tq. That F is continuous
intuitively means that these Ft vary continuously between each other as t is varied
continuously. This family of maps begins with F0 “ f and ends at F1 “ g. See
Figure 1.2.2.

g

F

f
X ˆ I Y

Figure 1.2.2: Homotopy between maps from X “ S1 to some space Y .
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Definition 1.2.2. Two spaces X and Y are called homotopy equivalent if there
exist maps f : X Ñ Y and g : Y Ñ X for which g ˝ f » idX and f ˝ g » idY . In this
case we write X » Y .

The notion of homotopy equivalence is far weaker than that of homeomorphism. For
example, the n-discs are all homotopy equivalent to each other and to the one point
space. Try the following basic exercises:

Exercise 1.2.2. Show that homotopy equivalence is indeed an equivalence relation, so
X » X for any space X, if X » Y then Y » X and if X » Y , Y » Z then X » Z.
Transitivity is where some small amount of work needs to be done.

Exercise 1.2.3. Show that Sn is homotopy equivalent to Rn`1 ´ t0u.

Exercise 1.2.4. Without being too rigorous about it, group the letters of the alphabet
tA,B,C, ¨ ¨ ¨ , Zu into their homeomorphism classes (this may depend on your choice of
font), considering these as subspaces of R2. Then group these classes up to the weaker
notion of homotopy equivalence. Does it make a difference whether some of your letters
are infinitely thin (1-dimensional) instead of slightly thickened (2-dimensional)?

Exercise 1.2.5. A space is called contractible if idX » cx0 , where cx0 : X Ñ X is the
constant map, defined by x ÞÑ x0 for all x P X and some fixed x0. Show that X being
contractible is equivalent to X being homotopy equivalent to the one point space.

There is a category called the homotopy category, denoted hTop, whose objects
are topological spaces and whose morphisms are homotopy classes of continuous maps.
Denote the homotopy class of a map by rf s (i.e., the equivalence class of maps homotopy
equivalent to f). By definition, the composition rgs ˝ rf s of continuous maps f : X Ñ Y
and g : Y Ñ Z is given by rg ˝ f s. We need to check that this is well-defined:

Lemma 1.2.1. If f » f 1 : X Ñ Y and g » g1 : Y Ñ Z then g ˝ f » g1 ˝ f 1.

Proof. Suppose that F is a homotopy realising f » f 1 and G realises g » g1. Then
the map px, tq ÞÑ GpF px, tq, tq is a continuous map from X ˆ I Ñ Z. It is a homotopy
from g ˝ f to g1 ˝ f 1. Indeed for t “ 0 we have that GpF px, 0q, 0q “ Gpfpxq, 0q “
gpfpxqq “ pg˝fqpxq and for t “ 1 we have that GpF px, 1q, 1q “ Gpf 1pxq, 1q “ g1pf 1pxqq “
pg1 ˝ f 1qpxq.

It follows that hTop is indeed a category: the identity morphism on X is the homotopy
class ridXs and associativity of usual function composition implies associativity in this
category.
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In terms of homotopy theory, perhaps the most boring (but surprisingly useful!) spaces
are those homotopy equivalent to the one point space ˚. As mentioned in Exercise 1.2.5,
these are the contractible spaces. Any space can be nicely embedded as a subspace
of a contractible space by taking its cone:

CX – pX ˆ Iq{pX ˆ t1uq.

That is, the cone is defined by taking the product with the interval I and collapsing
the top of this ‘cylinder’ to a point, see Figure 1.2.3. A homeomorphic copy of X sits
inside the base X ˆ t0u of the cone, or indeed as X ˆ ttu for any t P r0, 1q.

Exercise 1.2.6. Show that for any space X its cone CX is contractible.

Although it will only make a small appearance towards the end of the notes, another
very important construction in homotopy theory is the suspension. It is defined
as:

ΣX – pX ˆ Iq{ppx, 0q „ px1, 0q and px, 1q „ px1, 1q for all x, x1 P Xq.

That is, you get the suspension by taking the product with the interval, pinching the
top X ˆt1u to a point (as for the cone), and also pinching the base X ˆt0u to a point.
You may like to think of the suspension as given by two copies of the cone of X, each
identified at their bases, which are two copies of X.

X CX
X ˆ I

Figure 1.2.3: A space X, the ‘cylinder’ X ˆ I and the cone CX.

S0
S1 – ΣS0 S2 – ΣS1

¨ ¨ ¨

Figure 1.2.4: Suspending spheres to spheres.
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Example 1.2.1. A natural easiest example to apply this to is the one point space ˚.
It is easy to see that Σ˚ is homeomorphic to r0, 1s, equivalently D1. In fact, in general,
ΣDn – Dn`1. So applying suspension just gives the sequence ˚, ˚, ˚, . . . up to homotopy
equivalence.

Example 1.2.2. What’s the next most natural example to apply suspension to? Prob-
ably the two point space S0, surely that’s not much more complicated... Stretching two
points out along an interval and then glueing the top pair of points and bottom pair of
points gives the circle ΣS0 – S1. And it isn’t hard to see visually that ΣS1 – S2 (see
Figure 1.2.4). In fact, in general we have that ΣSn – Sn`1, so applying suspension to
the two point space results in the sequence S0, S1, S2, S3,. . . , an interesting sequence
of spaces indeed!

Exercise 1.2.7. Formally prove the above two examples.

1.2.1 CW complexes

A CW complex is a space that you can glue together from discs. It starts with a
discrete set of points X0 (which you can take as 0-dimensional discs). To construct the
1-skeleton X1 you glue 1-discs (closed intervals) at their endpoints to points of X0. The
result is a 1-dimensional complex, sometimes known as a graph. Your complex may
have 2-dimensional cells, in which case you attach 2-discs to X1 by glueing along their
boundary circles in some fashion. And so on, one continues adding n-discs for each n,
defining Xn. Either this process stops at some finite n or it continues indefinitely so
that the CW complex is ‘infinite dimensional’.

Let’s write up the above a little more precisely, and via a slightly different approach
for some variety (see also the definition matching the above description a little more
closely in Hatcher [Hat]). For a topological space Y , let a characteristic map be a
continuous map σ : Dn Ñ Y which is a homeomorphism when restricted to the open n-
disc tx P Rn | |x| ă 1u. An open n-cell of Y is a subset e Ď Y which is homeomorphic
to the open n-disc.

Then a CW complex X‚ consists of the following data:

• a Hausdorff topological space X and

• a partition of X into open cells eα for α P I

for which:

1. for each α P I there is a characteristic map σα : Dn Ñ X mapping the open n-disc
onto eα and mapping the boundary Sn´1 of the disc onto open cells of dimension
ď n´ 1;
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2. the topology on X is such that a subset C Ď X is closed if and only if the
intersection C X impσαq is closed for each α P I (equivalently the intersection of
C and the closure of each eα is closed).

The set I just indexes the open cells. The characteristic maps σα can be considered
as the maps which attach the cells, as in the opening discussion. We define the n-
skeleton Xn as the union of the n-cells eα. One can show that Xn may be described
as the quotient space of the disjoint union of Xn´1 and copies of the disc Dn, one for
each α P I corresponding to an n-cell, given by attaching the boundaries of these discs
to the pn´ 1q-skeleton according to the characteristic maps.

Don’t worry about condition 2 too much. If there are k-cells for dimensions k up to
and including n P N0, but not higher, we say that X is n-dimensional. In this case
condition 2 turns out to be superfluous. It is there to make sure we have the correct
topology in the infinite-dimensional case.

Exercise 1.2.8. Draw a CW decomposition of the 2-sphere with only two cells, and a
CW decomposition with precisely one 0-cell, one 1-cell and two 2-cells.

– T2
– RP 2

– K

Figure 1.2.5: Torus (top left), real projective plane (top right) and Klein bottle (bottom).

Example 1.2.3. Recall the construction of the torus T2 “ S1ˆS1 by glueing opposite
sides of the square I2, as in Figure 1.2.1. If at the second stage of that glueing one
glues the ends of the cylinder by a reflection, one gets the famous non-orientable surface
the Klein bottle K, see Figure 1.2.5. So K is also given by glueing the edges of I2 but
flipping the direction of one of the edges. It should not be surprising that you cannot
perform this glueing in R3—later we shall use homology to show that K does not embed
smoothly into R3.

Flipping both edges, one gets RP 2, the real projective plane. This is the space whose
points are in bijection with lines passing through the origin in R3, which possesses a
natural topology. A line in R3 is determined by a unit vector of S2, but antipodal points
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determine the same line. As a result RP 2 – S2{ „ where „ identifies antipodal points,
i.e., via the antipodal map x ÞÑ ´x. More generally, one may define RP n as the space
of lines in Rn`1, and it is homeomorphic to the quotient of Sn under the antipodal map.

Returning to T2, K and RP 2, we see that the square models determine CW decompo-
sitions for these spaces. They each have two 1-cells and a single 2-cell; T2 and K have
one 0-cell here, and RP 2 has two.

Exercise 1.2.9. Explain how RP n may be constructed from the n-disc Dn. Use this to
illustrate a CW decomposition for RP 3 (in analogy to the 2d pictures of Figure 1.2.5).
Explain how we may give RP n a CW decomposition with a single cell of each dimension.

Given a CW complex X‚, a subcomplex A‚ is a selection of cells from X‚ whose union
is closed in X. This turns out to be equivalent to asking that whenever we include a
cell eα of X‚ into A‚ then we have to also include in A‚ all of the cells intersecting the
boundary of eα. In this case, A‚ can be considered as a CW complex in its own right.
Denote the union of cells in A‚ by A. We call pX,Aq a CW pair.

The following theorem should be mentioned in passing, although we won’t use it later
in these notes:

Theorem 1.2.1 (Cellular approximation theorem). Say that a map f : X Ñ Y between
CW complexes X‚ and Y ‚ is cellular if f maps the k-skeleton of X‚ into the k-skeleton
of Y ‚ (that is, fpXkq Ď Y k) for each k P N0.

Consider two CW pairs pX,Aq and pY,Bq and a map of pairs f : pX,Aq Ñ pY,Bq
(which means that f : X Ñ Y is continuous and fpAq Ď B); note that A and B
are permitted to be empty. If the restriction of f to A is already cellular, then f is
homotopic to a cellular map via a homotopy F which is stationary on A. That is, there
exists F : X ˆ I Ñ Y with F px, 0q “ fpxq, F p´, 1q cellular and F pa, tq “ fpaq for all
a P A and t P I.

Proof. See [Hat]. Do try to think for a while, though, about why this result is completely
believable. How might you approach constructing the homotopy?

Here is a famous application:

Example 1.2.4. Let k ă n and consider a map f : Sk Ñ Sn. Choose base-points for
both spheres preserved by f . There is a CW decomposition for each sphere with one
0-cell (the base point) and one cell of dimension that of the sphere, with boundary
collapsed to the base point. By the cellular approximation theorem, f is homotopic to
a cellular map through a homotopy which is stationary on the base point. But since
k ă n, the k-cell of Sk has nowhere to go in a cellular map other than the 0-cell of Sn,
so all such maps are homotopic relative to their base-points to the constant map.
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This example shows that the homotopy group πkpS
nq of an n-sphere is trivial for k ă n.

This is quite believable: one cannot tie a sphere around another of higher dimension
in a way which cannot be unravelled (self-intersections being allowed) to the constant
map.

1.2.2 Euler characteristic

Let X‚ be a CW complex with only finitely many cells. We define its Euler charac-
teristic to be

χpXq–
8
ÿ

n“0

p´1qncn,

where cn is the number of n-cells in X‚. Whilst different CW decompositions for the
same space X can have different numbers of cells, it turns out that choosing a different
CW decomposition does not change the Euler characteristic. In fact, if X and Y
are homotopy equivalent finite CW complexes then χpXq “ χpY q. This is one nice
consequence that will follow from us proving that the homology groups of X and Y are
homotopy invariants, see Section 4.6.

Example 1.2.5. There is a CW decomposition of Sn of a single 0-cell and a single
n-cell (with boundary collapsed to the 0-cell). It follows that χpSnq “ 1 ` p´1qn “ 0
for n odd and χpSnq “ 2 for n even.

Remark 1.2.1. That χpSnq “ 0 for n odd and χpSnq ‰ 0 for n even is related (for
example, through the more general Poincaré–Hopf Theorem) to there being a non-
vanishing vector field on Sn if and only if n is odd. For n “ 2 this says that any vector
field on S2 has a zero. More poetically: “you cannot comb the hair of a hairy ball flat
without a parting”. This is the Hairy Ball Theorem. We won’t go through the details
of these things this term, but they would make for nice background reading.

1.2.3 Further topics

There are quite a few more important constructions in homotopy theory which we
haven’t covered but are worth mentioning. Included are: mapping cylinders mapping
cones and wedge sums (which will be mentioned later) and mapping spaces. There
are also reduced versions of these and previous constructions (e.g., the smash product
in place of the product, or the reduced suspension in place of the suspension) which
are useful when your spaces are pointed. The ideas of a cofibration and fibration are
important if you want to explore homotopy theory more deeply.
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Chapter 2

Homological algebra

2.1 Geometric motivation

The notions that we shall meet in this chapter are entirely algebraic: of chain complexes,
chain maps, taking the homology of a chain complex, taking induced homomorphisms
of chain maps and so on. Still, let’s briefly try to motivate the core idea geometrically
by how it will be applied in Chapter 3.

The approach will be to probe our space X with more fundamental geometric pieces
called simplicies (think of points, line segments, triangles, tetrahedra and higher dimen-
sional analogues). Doing this will define groups CnpXq, whose elements are formal sums
of these n-dimensional probes called chains. Given a chain of CnpXq, there is a way of
defining its boundary, which defines a group homomorphism Bn : CnpXq Ñ Cn´1pXq. It
turns out that the boundary of a boundary is always trivial, that is, Bn´1 ˝ Bn “ 0; this
is what makes a sequence of chain groups with boundary maps between them a chain
complex. For example, the boundary of a chain based upon the 3-simplex is a certain
oriented sum of its 4 bounding triangles. Applying the boundary map again, though,
one gets zero, the boundary line segments of these bounding triangles all cancelling
each other out, see Figure 2.1.1.

σ B2pσq B1pB2pσqq

B2 B1
“ 0

Figure 2.1.1: A 2-chain σ, its boundary Bσ and the boundary of its boundary B2σ “ 0.

The most geometrically interesting chains, those which one can use to “detect holes”
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in a space, have zero boundary i.e., they are elements σ P CnpXq with Bnpσq “ 0. Such
chains are called cycles. For example, in degree one you may think of cycles as sums
of loops; exposed ends of line segments would represent non-trivial boundary. Since
Bn´1 ˝ Bn “ 0, any chain of the form Bnpσq is a cycle but it is not always the case that
every cycle is the boundary of another chain.

Figure 2.1.2: The green 1-cycle plus the boundary of the left-hand part of the orange 2-chain
gives the red 1-cycle, so these two elements are identified in homology. The blue 1-cycle plus
the boundary of the right-hand part of the orange 2-chain results in zero, so this blue chain
represents the trivial element in homology.

We shall not care to distinguish many of the cycles of kerpBq. For example, we would
like to consider a meridian circle around a torus as unchanged if we slide it around, and
we would like to think of a circle which bounds a disc as being shrinkable and hence
trivial, see Figure 2.1.2. The clever idea is that we can phrase this relation in terms of
higher dimensional chains: we shall identify any two n-cycles whenever their difference
is a boundary, a chain of the form Bn`1pτq for τ P Cn`1pXq. This is equivalent to saying
that we quotient by impBn`1q. So our homology groups will turn out to be the group
of cycles modulo boundaries: HnpXq :“ kerpBnq{ impBn`1q.

How one associates a chain complex to a space will be explored in Chapter 3. There
is always a way of doing so (the so-called singular chain complex ), but there are more
computationally viable ways when your space has a simplicial or CW decomposition.
Schematically, then, we have the following process:

Top Ch Ab
Assign space

a chain complex

Take degree n homology

of chain complex

In the case of singular homology, the first step above is easily made a functor. The
second step is also functorial and takes place within the world of homological algebra.
This is a completely algebraic setting and has application to other areas, not just
topology. This section will be devoted to laying out the basics of homological algebra,
and thus we will depart from spaces for a short while.
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2.2 Chain complexes

2.2.1 Chain complexes and homology

Definition 2.2.1. A chain complex is a sequence of Abelian groups Cn (called the
chain groups) and homomorphisms Bn : Cn Ñ Cn´1 (called the boundary maps),
one for each n P Z. It is required that the composition of two consecutive boundary
maps is trivial, i.e., Bn´1 ˝ Bn “ 0 for all n P Z.

Diagrammatically, we write such a chain complex as

¨ ¨ ¨
B3
ÝÑ C2

B2
ÝÑ C1

B1
ÝÑ C0

B0
ÝÑ C´1

B´1
ÝÝÑ C´2

B´2
ÝÝÑ ¨ ¨ ¨ .

Elements σ P Cn are referred to as n-chains. We shall often refer to a chain complex
symbolically by something like C˚, or pC˚, B˚q when we wish to emphasise the naming
convention of the boundary map (which will be useful when we have more than one chain
complex on the scene). It often reduces clutter to remove parentheses and subscripts
from applications of the boundary map, so we will occasionally write, say, Bnpσq as Bσ.
The integer n of Cn is called the degree.

Note that it is possible to consider chain complexes in some other categories. For exam-
ple, one often asks that the chain groups are actually modules and the boundary maps
are homomorphisms of modules, or one has rings with ring homomorphisms as bound-
ary maps, or vector spaces with linear boundary maps. Taking Abelian groups and
homomorphisms as boundary maps will be general enough for our purposes here.

Example 2.2.1. Consider the following diagram

¨ ¨ ¨ Ñ 0 Ñ 0 Ñ Z
p 2

2 q
ÝÝÑ
B2

Z2

´

1 ´1
´1 1

¯

ÝÝÝÝÝÝÑ
B1

Z2
Ñ 0 Ñ 0 Ñ ¨ ¨ ¨

Here the chain groups Cn are assumed to be the trivial group for n ă 0 or n ą 2.
The matrices induce homomorphisms B1 and B2 in the expected way. The composition
B1 ˝ B2 is easily seen to be the zero map from Z to Z2 and every other composition of
two successive boundary maps involves a trivial group, so must also be a zero map. So
this is a chain complex.

Example 2.2.2. It is easily checked that the following is a chain complex:

¨ ¨ ¨ Ñ 0 Ñ 0 Ñ Z ˆ2
ÝÑ
B3

Z ˆ2
ÝÑ
B2

Z{4 ˆ4
ÝÑ
B1

Z{8 Ñ 0 Ñ 0 Ñ ¨ ¨ ¨ .

Here, the map ˆn sends the standard generator of the domain to n times the standard
generator of the codomain.
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Definition 2.2.2. Given a chain complex C˚, an element σ P kerpBnq is called an n-
cycle and an element σ P impBn`1q is called an n-boundary. The homology groups
of C˚ are the quotient groups Hn :“ kerpBnq{ impBn`1q for n P Z.

Two n-chains σ1, σ2 P Cn are called homologous if there exists some pn ` 1q-chain
τ P Cn`1 with σ1 ´ σ2 “ Bn`1pτq. So the degree n homology group Hn is the group of
n-cycles where homologous cycles are identified.

Remark 2.2.1. Again, some remarks on notation. The above is not completely no-
tationally sound, since Hn does not refer to the chain complex whose homology has
been taken. When this causes an issue we will write something like HnpCq, to mean
the degree n homology group of the chain complex C˚. Arguably the chain complex
should then really be named C instead of C˚ (as Hn is something we apply to our
chain complex, like a function), but the lower ˚ is a helpful reminder that it is a chain
complex, which will be particularly useful when you learn about cochain complexes in
the next term (which are often denoted by something like C˚).

An element of HnpCq will sometimes be referred to as a homology class, and denoted,
say, rσs where σ P Cn is a representative of the class. Remember that the homology
class can be represented by different cycles, in particular rσs is represented precisely by
chains of the form σ`Bn`1pτq for τ P Cn`1, all of which are identified when we pass to
homology.

Homology is well defined: the equation Bn´1 ˝ Bn “ 0 is equivalent to saying that
impBnq Ď kerpBn´1q, so the boundaries are a subgroup of the cycles. They are a normal
subgroup, since everything here is Abelian, so the quotient Hn is a well defined Abelian
group.

Example 2.2.3. Let’s compute the homology of the simple chain complex from Ex-
ample 2.2.1. In degrees n ‰ 0, 1, 2 we have that Cn is the trivial group so it must be
that Hn – 0 too. To compute H0 note that everything in C0 – Z2 is in the kernel of
B0 since it has codomain the trivial group. So H0 – Z2{ impB1q. The image of B1 is the
subgroup

impB1q “ tpn,´nq | n P Zu.

It is easy to see then that the quotient group H0 is isomorphic to Z.

For H1 we have that
kerpB1q “ tpn, nq | n P Zu,

a subgroup of C1 “ Z2 isomorphic to Z; a generator can be taken as p1, 1q P Z2. On
the other hand

impB2q “ tp2n, 2nq | n P Zu.

This is the index 2 subgroup of kerpB1q generated by p2, 2q so H1 – Z{2. Finally, we
have that impB3q is trivial, since C3 is trivial, so H2 – kerpB2q – 0.
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Example 2.2.4. Check that for Example 2.2.2 we get homology H0 – Z{4 and Hn – 0
otherwise.

2.2.2 Exact sequences

Definition 2.2.3. A chain complex C˚ is called a long exact sequence (LES), or
simply exact, if impBnq “ kerpBn´1q for all n P Z.

Note that a sequence is exact if and only if Hn – 0 for all n P Z. In this sense, you
may think of the homology of a chain complex as measuring how far it is from being
exact.

Many of our chain complexes will be trivial in negative degrees, or sufficiently large
degrees. It is common to simply omit these trivial terms, for example a chain complex
with all negative degrees trivial is usually written as

¨ ¨ ¨
B3
ÝÑ C2

B2
ÝÑ C1

B1
ÝÑ C0 Ñ 0.

We say that smaller diagrams are exact if they are exact in each spot where this makes
sense. For example,

A
f
ÝÑ B

g
ÝÑ C

h
ÝÑ D

is exact precisely when impfq “ kerpgq and impgq “ kerphq.

Example 2.2.5. The diagram

0 Ñ A
f
ÝÑ B

is exact precisely when ker f “ t0u, that is, when f is injective.

Example 2.2.6. The diagram
B

g
ÝÑ C Ñ 0

is exact precisely when im g “ C, that is, when g is surjective.

An important example of an exact sequence is one of the form

0 Ñ A
f
ÝÑ B

g
ÝÑ C Ñ 0,

called a short exact sequence (SES). As above we see that f is injective and g is
surjective. It is helpful to think of B as built from A and C: we have that impfq – A
and C – B{ impfq, by the first isomorphism theorem of group theory. However, it
is not necessarily true that A ‘ C – B. When A and C are specified, finding B is
known as solving an extension problem. There are typically different possible groups
B completing the SES given fixed A and C if nothing about the homomorphisms is
specified:
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Exercise 2.2.1. For a short exact sequence

0 Ñ A
f
ÝÑ B

g
ÝÑ C Ñ 0,

show that there is a bijection between A ˆ C and B as sets(!!), so their cardinalities
agree. However, this bijection cannot always be chosen to be a homomorphism: B
need not be isomorphic to A ‘ C as a group(!!). Find such an example of a short
exact sequence, with B not isomorphic to A‘C. Try to find an example where B has
infinitely many elements (you may find Section 2.4.2 relevant in what you can hope to
work) and one where B has finitely many elements (in which case the initial problem
here will be relevant).

Whilst we don’t always have that A‘ C – B for a SES, given just the fixed groups A
and C there is of course always the short exact sequence

0 Ñ AÑ A‘ C Ñ C Ñ 0,

the first map being the inclusion a ÞÑ pa, 0q and the second the projection pa, cq ÞÑ c.
This is known as the trivial extension.

Example 2.2.7. Let B be an Abelian group and A ď B a subgroup. Then we get a
SES

0 Ñ A ãÑ B Ñ B{AÑ 0

where the first map is the inclusion and the second is the quotient. By earlier comments,
up to isomorphism one can essentially view any SES as one of the above form.

Another source of SESs is from group homomorphisms. For f : B Ñ C we get an
associated SES

0 Ñ kerpfq ãÑ B Ñ impfq Ñ 0

by the first isomorphism theorem of group theory. Again, up to isomorphism, you can
essentially think of any SES as coming from this kind of situation.

2.2.3 Maps between chain complexes

Definition 2.2.4. A chain map between chain complexes pA˚, B
A
˚ q and pB˚, B

B
˚ q is

determined by a commutative diagram of the form

¨ ¨ ¨ A2 A1 A0 A´1 A´2 ¨ ¨ ¨

¨ ¨ ¨ B2 B1 B0 B´1 B´2 ¨ ¨ ¨ .

BA3

f2

BA2

f1

BA1

f0

BA0

f´1

BA´1

f´2

BA´2

BB3 BB2 BB1 BB0 BB´1 BB´2

in the category Ab of Abelian groups. That is, a chain map is given by a sequence
pfnqnPZ of group homomorphisms fn : An Ñ Bn for which fn´1 ˝ B

A
n “ B

B
n ˝ fn.
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We shall usually use a lower sharp to denote a chain map pfnqnPZ “ f7. Given two
chain maps f7 : A˚ Ñ B˚ and g7 : B˚ Ñ C˚, there is an obvious way to define their
composition, namely we let g7 ˝ f7 – pgn ˝ fnqnPZ so in degree n the chain map is the
composition gn ˝ fn.

Exercise 2.2.2. Check that chain complexes with chain maps as morphisms form a
category.

Definition 2.2.5. For a chain map f7 : A˚ Ñ B˚ the induced map f˚ : HnpAq Ñ
HnpBq is defined by setting f˚prσsq– rfnpσqs, where on both sides of this equation the
square brackets refer to the homology class (on the left in A˚ and on the right in B˚).

Exercise 2.2.3. Show that the induced map does not depend on the representatives of
the homology classes we choose and so is well defined. That is, for rσs “ rσ1s in HnpAq
show that rfnpσqs “ rfnpσ

1qs in HnpBq. Thus verify that the induced map is a well
defined homomorphism of Abelian groups in each degree. This is a simple exercise but
worth doing early to understand properly the definition of the induced map and why it
works.

Lemma 2.2.1. Taking the homology of a chain complex is functorial:

• the induced map id˚ of the identity chain map id7 : C˚ Ñ C˚ is the identity map
id : H˚ Ñ H˚;

• given two chain maps f7 : A˚ Ñ B˚ and g7 : B˚ Ñ C˚ we have that pg7 ˝ f7q˚ “
g˚ ˝ f˚.

Proof. By the definition of the induced map, we have that id˚prσsq “ ridpσqs “ rσs for
a chain σ, so id˚ is the identity homomorphism on H˚ in each degree. Suppose then
that f7 and g7 are chain maps as in the statement of the lemma. We have that

pg7 ˝ f7q˚prσsq “ rpg7 ˝ f7qnpσqs “ rgnpfnpσqqs “ g˚prfnpσqsq “ g˚pf˚prσsqq,

so pg7 ˝ f7q˚ “ g˚ ˝ f˚, as desired.

2.2.4 Sub-, kernel, image and quotient chain complexes

Definition 2.2.6. Let pB˚, B˚q be a chain complex. A sub-chain complex A˚ ď B˚
is given by a sequence of subgroups An ď Bn, for n P Z. We require that if σ P An then
Bnpσq P An´1, so that pA˚, B˚q is itself a chain complex.

Just as a homomorphism f : A Ñ B between groups has a kernel kerpfq ď A and
image impfq ď B, so too a chain map f7 : A˚ Ñ B˚ has a kernel sub-chain complex
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kerpf7q ď A˚ and image sub-chain complex impf7q ď B˚. The definitions are obvious:
kerpf7q has as degree n chain group kerpfnq ď An and impf7q has as degree n chain
group impfnq ď Bn.

Exercise 2.2.4. Check that the kernel and image of a chain map are indeed sub-chain
complexes.

For an Abelian group B with subgroup A ď B, we can form the quotient group B{A.
Similarly, for chain complexes A˚ ď B˚ we can form the quotient complex B˚{A˚. It
has as degree n chain group Bn{An, and degree n boundary map Bnprσsq– rBnpσqs for
σ P Bn.

Exercise 2.2.5. Check that the quotient chain complex is a well-defined chain complex.

2.2.5 Chain homotopies

Definition 2.2.7. Let f7 and g7 be two chain maps from A˚ to B˚. A chain homotopy
between them is a sequence of group homomorphisms hn : An Ñ Bn`1 satisfying:

gn ´ fn “ hn´1 ˝ B
A
n ` B

B
n`1 ˝ hn.

In this case we call f7 and g7 chain homotopic and write f7 » g7.

We call A˚ and B˚ chain homotopy equivalent if there exist chain maps f7 : A˚ Ñ B˚
and g7 : B˚ Ñ A˚ for which g7 ˝ f7 » idA˚ and f7 ˝ g7 » idB˚ .

Exercise 2.2.6. Show chain homotopy equivalence is an equivalence relation on chain
maps, and that everything respects compositions of chain maps (so prove the counter-
parts of Exercise 1.2.2 and Lemma 1.2.1 from the geometric setting).

Remember that the geometric notion of homotopy relates continuous maps between
topological spaces. The algebraic notion of chain homotopy relates chains maps between
chain complexes. You may simply take the above as a definition for now, although to get
some intuition it will help to prove the following lemma. For more geometric intuition,
also see the proceeding exercises.

Lemma 2.2.2. If f7 and g7 are chain homotopic then their induced maps on homology
agree, that is, f˚ “ g˚.

Proof. Another simple but instructive Exercise.

Corollary 2.2.1. If A˚ and B˚ are chain homotopy equivalent then they have isomor-
phic homology, that is, HnpAq – HnpBq for all n P Z.
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Proof. Suppose that A˚ and B˚ are chain homotopy equivalent, so there exist chain
maps f7 and g7 as described in Definition 2.2.7 for which g7˝f7 » idA˚ and f7˝g7 » idB˚ .
Applying induced maps and the above lemma, we see that pg7 ˝ f7q˚ “ pidA˚q˚ and pf7 ˝
g7q˚ “ pidB˚q˚. As taking homology and induced maps is a functor (see Lemma 2.2.1)
it follows that f˚ and g˚ are isomorphisms: f˚ ˝ g˚ “ idH˚pAq and g˚ ˝ f˚ “ idH˚pBq so
HnpAq – HnpBq for all n P Z.

Exercise 2.2.7. Let A˚ be a chain complex. We have the cylinder chain complex Ac˚:

¨ ¨ ¨
Bc3
ÝÑ A1 ‘ pA2 ‘ A2q

Bc2
ÝÑ A0 ‘ pA1 ‘ A1q

Bc1
ÝÑ A´1 ‘ pA0 ‘ A0q

Bc0
ÝÑ ¨ ¨ ¨

with degree n term An´1 ‘ pAn ‘ Anq and boundary maps

B
c
npσ, pτ1, τ2qq– pBσ, pp´1qn`1σ ` Bτ1, p´1qnσ ` Bτ2qq.

Show that this defines a chain complex.

Remark 2.2.2. On a first reading it’s perhaps best to skip this remark and, again, to
take the definition of a chain homotopy simply as a formal definition. There is some
geometric intuition to the definition of the cylinder of a chain complex above. We want
to think of it as the counterpart to the ‘cylinder’ X ˆ I of a space X, where I “ r0, 1s
is the interval. An element of the degree n chain group is given by an pn ´ 1q-chain
σ P An´1, which we think of as n-dimensional after taking the product across the 1-
dimensional interval I (write it as σ b e), along with a specification of two n-chains
τ1, τ2 P An, chains which we think of as n-dimensional objects coming from the product
with the bottom vertex of the interval (write τ1bv1) and the top vertex (write τ2bv2).

The boundary map then has a geometric picture. The various pieces which define the
boundary map are

B
c
npσ b eq– Bσ b e` p´1qn`1σ b v1 ` p´1qnσ b v2;

B
c
npτ1 b v1q– Bτ1 b v1;

B
c
npτ2 b v2q– Bτ2 b v2.

The top equation says what is happening along the sides of the cylinder, the last two
on the top and bottom1.

1We may add algebraic detail here. There is a chain complex I˚ of the form

¨ ¨ ¨ Ñ 0 Ñ Z B1
ÝÑ Z‘ ZÑ 0 Ñ ¨ ¨ ¨

where B1pxq “ px,´xq; this chain complex may be thought of as corresponding to the interval (c.f.,
Example 3.2.4). There is a way of taking tensor products of chain complexes so that Ac

˚ “ A˚ b I˚.
This corresponds to our intuition that the cylinder should correspond to a product with the interval.
However, we shall not cover the details of that here.
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Exercise 2.2.8. In the spirit of the discussion above, show that a chain homotopy may
be identified with a chain map h7 : A

c
˚ Ñ B˚, where Ac˚ is the cylinder chain complex

above. Note the comparison to a geometric homotopy!

Exercise 2.2.9. For any map F : X ˆ I Ñ Y we have a homotopy between uniquely
specified maps, F p´, 0q to F p´, 1q. In contrast, let hn : An Ñ Bn`1 be any homomor-
phism for each n P Z, for chain complexes A˚ and B˚. Show that phnq defines a chain
homotopy from any given chain map f7 : A˚ Ñ B˚ to some other chain map g7, which
is uniquely determined by f7 and phnq.

Exercise 2.2.10. Show that the homology groups H˚ of a chain complex C˚ are trivial
if there exists a chain homotopy between the zero map and identity map on C˚.

The other direction isn’t quite true. But show that if C˚ is such that each Cn is free
Abelian (see Section 2.4) and Ck – 0 if k ă 0, then H˚ – 0 implies that there is a
chain homotopy between the zero map and the identity on C˚ (note: having all trivial
homology groups is known as being acyclic, although we won’t use that terminology
elsewhere). Hint: start by defining the chain homotopy in degree zero.

2.3 The Snake Lemma

Definition 2.3.1. A diagram

0 Ñ A˚
f7
ÝÑ B˚

g7
ÝÑ C˚ Ñ 0

of chain complexes and chain maps is called exact or a SES of chain complexes if the
diagrams

0 Ñ An
fn
ÝÑ Bn

gn
ÝÑ Cn Ñ 0

are exact in each degree i.e., fn is injective, gn is surjective and impfnq “ kerpgnq for all
n P Z.

Example 2.3.1. Recall the notion of a sub-chain complex A˚ ď B˚ from Section 2.2.4
and the associated quotient complex B˚{A˚. Naturally associated to this there is a
corresponding short exact sequence:

0 Ñ A˚ ãÑ B˚ Ñ B˚{A˚ Ñ 0. (2.3.1)

The map from A˚ to B˚ is simply the inclusion chain map, and the map from B˚ to
B˚{A˚ is the quotient map.

In the above example we see that there is a diagrammatic means of expressing the
relationship between a chain complex, a sub-chain complex of it and the corresponding
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quotient complex. Sometimes one is interested in the homology of one of these, and
in many cases it is possible to compute it (or at least say something about it) from
the homology of the other two pieces. Unfortunately, simply applying homology to the
SESs in each degree

0 Ñ HnpAq
f˚
ÝÑ HnpBq

g˚
ÝÑ HnpCq Ñ 0 7

is not typically a short exact sequence! The correct solution is not far from this though.
From a short exact sequence of chain complexes one can naturally define a long exact
sequence of the corresponding homology groups. So rather than the diagram of homolo-
gies above, which need not be a SES, the correct formulation requires one to consider
all of the homology groups in each degree together in one large diagram. The way this
diagram is usually drawn—with the new maps zig-zagging across it—is the reason for
this construction being known as the Snake Lemma:

Lemma 2.3.1 (The Snake Lemma). Let

0 Ñ A˚
f7
ÝÑ B˚

g7
ÝÑ C˚ Ñ 0

be a SES of chain complexes. Then there is a corresponding LES of homology groups:

¨ ¨ ¨ Hn`1pCq

HnpAq HnpBq HnpCq

Hn´1pAq Hn´1pBq Hn´1pCq

Hn´2pAq ¨ ¨ ¨

g˚

B˚

f˚ g˚

B˚

f˚ g˚

B˚

f˚

The maps f˚ : HnpAq Ñ HnpBq and g˚ : HnpBq Ñ HnpCq in each degree n are the usual
induced maps in homology of the chain maps f7 and g7. The other maps

B˚ : HnpCq Ñ Hn´1pAq

are defined by B˚prγsq – rαs for an n-cycle γ P Cn, where α P An´1 is such that
fn´1pαq “ B

B
n pβq for β P Bn with gnpβq “ γ. Here, BBn the degree n boundary map of

B˚.

Remark 2.3.1. One should check that the elements used to construct the map B˚
above exist. That the resulting map is well defined requires more checking; all of this
is verified in the proof of the Snake Lemma. It is known as the connecting map.
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The connecting map is easier to understand in the setting of Example 2.3.1 where f7
is an inclusion of chain complexes A˚ ãÑ B˚ and g7 is the quotient B˚ � B˚{A˚. In
this case, suppose that we have some n-cycle rγs P B˚{A˚. It is represented by some
γ P B˚ and being a cycle means that the boundary of rγs represents zero in the quotient
B˚{A˚, that is, BBn pγq P An´1. Checking the definition of B˚ in the Snake Lemma, we
see that we may take B˚prγsq as the homology class of BBn pγq in A˚.

There is quite a bit to check in proving the Snake Lemma. But one is essentially forced
into the choices of elements to construct at each stage of the proof, leading one down a
series of so-called ‘diagram chases’. I highly recommend at this point that you attempt
the proof yourself, which will be far more instructive than just reading the proof. You
need to check that the elements defining the connecting map exist, that γ must be a
cycle, that the connecting map does not depend on the particular choices we made for
the representative of the homology class rγs or the chosen elements α and β and that
the diagram is exact at every spot. In case you get stuck, the proof is included (in
wordy detail) in Appendix A.

Example 2.3.2. Consider A˚ ď B˚, where these chain complexes have the form

A˚ “ 0 Ñ 0 Ñ Z3 B1
ÝÑ Z2

Ñ 0

and
B˚ “ 0 Ñ Z B2

ÝÑ Z3 B1
ÝÑ Z2

Ñ 0,

So the chain complexes A˚ and B˚ only differ in that B˚ has an extra term in degree
two and possibly non-trivial boundary map B2 (the B1 of the first complex is equal to
that of second). Suppose that we have somehow determined H0pAq – Z. Can we work
out the homology of B˚?

To get things going, first note that we can determine H˚pAq: by assumption H0pAq – Z
and HnpAq – 0 for n ą 1 (since the corresponding chain groups are trivial). In degree
one we have that H1pAq – kerpB2q (no need to take a quotient, because A2 – 0). So
H1pAq fits into the following SES:

0 Ñ H1pAq Ñ Z3 B1
ÝÑ ZÑ 0.

It isn’t hard to show from this that H1pAq – Z2 (it must be a free Abelian group of
rank 2, see the next section).

Consider now the quotient complex B˚{A˚. Since An “ Bn in each term except for in
degree 2, clearly

B˚{A˚ “ 0 Ñ ZÑ 0 Ñ 0 Ñ 0

and H2pB˚{A˚q – Z, with HnpB˚{A˚q – 0 in all other degrees.
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Apply the snake lemma to the SES of chain complexes 0 Ñ A˚ Ñ B˚ Ñ B˚{A˚ Ñ 0:

0 H2pBq Z

Z2 H1pBq 0

Z H0pBq 0

g˚

B˚

f˚ g˚

B˚

f˚ g˚

The final four terms
0 Ñ Z f˚

ÝÑ H0pBq Ñ 0

imply that f˚ is an isomorphism there, so H0pBq – Z. The remaining relevant portion
to consider is:

0 Ñ H2pBq
g˚
ÝÑ Z δ˚

ÝÑ Z2 f˚
ÝÑ H1pBq

g˚
ÝÑ 0.

Note that, since the degree three boundary map is trivial, we have that H2pBq may be
identified with kerpB2q, where B2 : Z Ñ Z3. There are two cases: either kerpB2q – Z or
kerpB2q – 0 (every subgroup of Z is of this form).

Take the former case. Since Z3 is free Abelian, the only way that kerpB2q – Z is for
B2 to be the zero map. Looking at the chain complex B˚, we thus see that we may
essentially identify HnpBq and HnpAq for all n ‰ 2; in particular, for H1pBq we have
that H1pBq – kerpB1q{ impB2q – kerpB1q – H1pAq – Z2.

So suppose instead that H2pBq – kerpB2q is trivial. Then we get a short exact sequence
from the snake diagram

0 Ñ Z B˚
ÝÑ Z2 f˚

ÝÑ H1pBq Ñ 0.

This means thatH1pBq – Z2{ impB˚q. Note that B˚ is injective, so impB˚q – Z. However,
we unfortunately do not have enough information to determine H1pBq. For example, if
impB˚q “ Zxp1, 0qy then H1pBq – Z, but if impB˚q “ Zxpn, 0qy then H1pBq – Z ‘ Z{n.
Here, Zxxy – tn ¨ x | n P Zu ď Z2. In fact, we may indeed choose the boundary maps
B1 and B2 so that H2pBq – 0 and H1pBq – Z‘Z{n for any desired n P N0 (setting Z{0
as the trivial group).

Summarising, either

HkpBq –

$

’

’

’

&

’

’

’

%

Z for k “ 0;

Z2 for k “ 1;

Z for k “ 2;

0 otherwise.

or

HkpBq –

$

’

&

’

%

Z for k “ 0;

Z‘ Z{n for k “ 1;

0 otherwise.
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for some n P N0.

The Snake Lemma wasn’t really necessary here (at some point we could have just
thought directly about the chain complex B˚), but in more complicated situations it can
conveniently organise what may be known on the relationships between the homology
groups of the complexes.

Exercise 2.3.1. Suppose in the above example that B1pa, b, xq – px,´xq. Complete
the example by showing that H1pBq – Z ‘ Z{n can be realised for any n P N by
choosing B2 appropriately.

2.4 Free Abelian groups, rank, split exact sequences

and Euler characteristic

2.4.1 The rank of an Abelian group

Let A be an Abelian group. We write 0a – 0 (where on the right this denotes the
identity of A), na – a ` a ` ¨ ¨ ¨ ` a for n P N (where the number of terms of the sum
is n) and p´nqa – ´pnaq “ np´aq (the inverse of na, where we use additive notation
because A is Abelian). So for any n P Z and a P A the term na is defined and satisfies
some obvious properties. We note that this is what makes an Abelian group the same
thing as a Z-module.

Take a subset S Ď A. A Z-linear sum of elements of S is a finite sum
ř

niai where
each ni P Z and ai P S. We say that S is linearly independent if such a sum equalling
zero implies that each ni “ 0. If we can find a linearly independent subset S so that
every element of A can be expressed (necessarily uniquely) as such a sum, then we call
A free Abelian, and call S a basis. It is not hard to see that in this case A –

À

S Z.
The cardinality |S| of S is called the rank of the free Abelian group A, denoted rkpAq.
Free Abelian groups are determined up to isomorphism by their rank. For example, Zn
is free Abelian of rank n and any free Abelian group of rank n is isomorphic to it.

Let S Ď A be linearly independent. We call S maximal if we cannot add another
element to S and still have a linearly independent set (in other words, for all a P A we
have that na is a Z-linear combination in S for some non-zero n P Z). We can extend
the definition of rank to an arbitrary Abelian group: we let rkpAq be the cardinality of a
maximal set of linearly independent elements (note that this agrees with the definition
above in the free Abelian case, presuming both are well defined). For example:

• rkpAq “ 0 if and only if A is torsion, that is for all a P A there exists some
non-zero n P Z with na “ 0.
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• if A is a finitely generated Abelian group, then a fundamental theorem says that
A – Zn ‘ T for some n P N0 and torsion group T – Z{k1 ‘ Z{k2 ‘ ¨ ¨ ¨Z{k`, a
finite direct sum of finite cyclic groups. Then rkpAq “ n.

• (Exercise:) show that rkpQq “ 1 and rkpRq is uncountable.

The rank behaves additively with respect to short exact sequences:

Lemma 2.4.1. Let
0 Ñ A

f
ÝÑ B

g
ÝÑ C Ñ 0

be a SES of Abelian groups. Then rkpAq ` rkpCq “ rkpBq.

We leave the proof of this, and the proof that rank is well-defined, to Appendix B.

Note that since kerpgq “ impfq – A and impgq “ C, thinking of the rank of an Abelian
group as an analogue of the dimension of a vector space, this gives a generalisation of
the rank–nullity theorem of linear algebra. In fact, if you know about tensor products,
a fancier approach is to tensor such a SES by Q:

0 Ñ AbZ QÑ B bZ QÑ C bZ QÑ 0.

This turns the original SES into a SES of vector spaces (over Q). The dimensions of
these vector spaces are exactly the ranks of the groups, and then the above lemma
just follows from the standard rank–nullity theorem. However, we shall avoid defining
tensor products in these notes.

2.4.2 Split exact sequences

Any subgroup of a free Abelian group is free Abelian. Another important property of
free Abelian groups is the following: if

0 Ñ AÑ B Ñ F Ñ 0

is a SES with F free Abelian, then B – A ‘ F . This will follow from the following
splitting lemma:

Lemma 2.4.2. Let 0 Ñ A
f
ÝÑ B

g
ÝÑ C Ñ 0 be a short exact sequence. The following

properties are equivalent:

1. (Left Split): there is a map l : B Ñ A for which l ˝ f “ idA;

2. (Right Split): there is a map r : C Ñ B for which g ˝ r “ idC;
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3. (Triviality): the short exact sequence is a trivial extension. That is, there is a
commutative diagram

0 A B C 0

0 A A‘ C C 0

f

idA

g

–

f

idC

i p

where the outside vertical maps are the identity maps2, the central one is an
isomorphism and the bottom row is the trivial extension (so i is the canonical
inclusion and p the projection to the second factor).

A SES satisfying one of the above equivalent properties is called split. Note that
for a split diagram as above we have that B – A ‘ C, but the existence of some
such isomorphism may not be enough to imply that a diagram is split (one needs the
commutative diagram as given).

Proof. Try the proof of the splitting lemma as an Exercise. I would suggest proving
1 ñ 3, 2 ñ 3 and 3 ñ 1, 3 ñ 2. Given 3, there’s a reasonably obvious choice for the
maps l and r for 1 and 2, making the final two implications are a bit easier to check
than the first two.

Try also showing the consequence below by constructing a right splitting:

Corollary 2.4.1. A SES 0 Ñ A Ñ B Ñ F Ñ 0 for F free Abelian is split, so in
particular B – A‘ F .

2.4.3 Euler characteristic of chain complexes

Let C˚ be a chain complex whose chain groups Cn are all finite rank and trivial for all
but finitely many n P Z. Define the Euler characteristic of C˚ as the alternating
sum

χpC˚q–
ÿ

nPZ

p´1qnrkpCnq.

Then we can also compute this number as the alternating sum of ranks of the homology
groups:

Theorem 2.4.1. For a chain complex C˚ as above, we have that

χpC˚q “
ÿ

nPZ

p´1qnrkpHnq.

2It is actually enough for the outside vertical maps to be just isomorphisms rather than identity
maps. In fact, it follows from the five lemma (Homework 2) that in either case the middle vertical
map being a homomorphism implies that it must be an isomorphism already.
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Proof. Consider the following two SESs:

0 Ñ kerpBnq Ñ Cn Ñ impBnq Ñ 0

and
0 Ñ impBn`1q Ñ kerpBnq Ñ Hn Ñ 0.

So rkpCnq “ rkpkerpBnqq ` rkpimpBnqq and rkpHnq “ rkpkerpBnqq ´ rkpimpBn`1q by
Lemma 2.4.1.

Now just plug everything in to the definition of χ:

χpC˚q–
ÿ

nPZ

p´1qnrkpCnq “
ÿ

nPZ

p´1qn
`

rkpkerpBnqq ` rkpimpBnqq
˘

“

ÿ

nPZ

p´1qn
`

rkpkerpBnqq ´ rkpimpBn`1qq
˘

“
ÿ

nPZ

p´1qnrkpHnq.
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Chapter 3

Homology of spaces

3.1 Overview

We shall look at three approaches to assigning homology groups to spaces, in the fol-
lowing order:

1. simplicial homology;

2. singular homology;

3. cellular homology.

Simplicial and cellular homology apply only to spaces with particular kinds of nice de-
compositions into cells (they apply to simplicial complexes and CW complexes, respec-
tively). A CW cellular decomposition is a far more general structure than a simplicial
one, and where a space can be triangulated by a simplicial complex it is typically the
case that the number of cells required is far greater than for a CW decomposition, and
more cells translates into more time-consuming calculations. However, the definition of
simplicial homology is simpler and will be helpful in getting us going and getting a feel
for the idea of how to define and find the homology of a space.

Singular homology is rather different. Technically, simplicial and cellular homology do
not apply to spaces rather than to simplicial complexes and CW complexes, respec-
tively, whereas singular homology can be applied to any topological space, regardless
of whether it is (or can be) equipped with a cellular decomposition. Unfortunately it is
completely unsuitable for computational purposes, but it is useful as a bridge between
other homology theories, and for showing that they are genuine homotopy invariants.
One may show that the simplicial and cellular homology groups are isomorphic to the
singular homology groups, and so all three approaches lead to the same answers on the
spaces to which they apply and are homotopy invariants.

41



3.2 Simplicial homology

3.2.1 Abstract simplicial complexes

Definition 3.2.1. An (abstract) simplicial complex K is a set of non-empty finite
subsets of some set V such that:

• the singleton set tvu P K for all v P V ;

• if β P K and H ‰ α Ď β then α P K too.

An abstract simplicial complex is a combinatorial (often even finite) object. However,
we think of it geometrically: the set V lists the vertices of the complex. For each one-
element set tvu P K we imagine a vertex. For two vertices tv0u, tv1u P K, if tv0, v1u P K
then we think of there being a line-segment, a 1-cell, connecting v0 to v1. Suppose that
we have a triangular cycle of such 1-cells, tv0, v1u, tv1, v2u, tv2, v0u. Then it is permitted
that tv0, v1, v2u P K. If this is the case, then we imagine our complex as having a 2-
dimensional triangle filled in, with vertices tv0u, tv1u and tv2u bounded by the edges
between them. A four-element set tv0, v1, v2, v3u P K is thought of as a 3-dimensional
tetrahedron whose four faces (i.e., the three element subsets with some vi removed)
should all also be in the complex. And so on, we continue filling in n-dimensional
objects for elements of size n` 1 in K.

3.2.2 Geometric simplices

The process described above, converting an abstract simplicial complex into an asso-
ciated space, is the geometric realisation. To construct it, we firstly define our funda-
mental kinds of cells, the vertices, edges, triangles, tetrahedra and higher dimensional
analogues, so-called simplices.

Definition 3.2.2. The convex hull of a finite set of points α “ tv0, . . . , vnu Ď RN is
the subspace

t

n
ÿ

i“0

λivi | λi P r0, 1s,
n
ÿ

i“0

λi “ 1u Ď RN .

If the set tv1 ´ v0, v2 ´ v0, . . . , vn ´ v0u is linearly independent then we say that the
n` 1 points of α are in general position and call the convex hull ∆α an n-simplex.
The standard n-simplex ∆n is the convex hull of the standard pn ` 1q basis vectors
of Rn`1.

Note that a subset X Ď RN is called convex if the straight line segment rx, ys between
any two points x, y P X is wholly contained in X. One may show that the convex hull
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Figure 3.2.1: The convex hull of 5 points not in general position (left), and 0, 1, 2 and
3-simplex (right)

of a set of points is the smallest convex set containing those points.

An n-simplex ∆α is homeomorphic to Dn, the closed unit disc of Rn. We denote its
boundary by B∆α, which is the union of faces ∆β for β P K with H ‰ β Ă α. The
boundary of an n-simplex is homeomorphic to the pn´ 1q-sphere Sn´1.

In lots of what is to follow, it will help to take the computer science convention of
indexing from zero. For example, we will list the n standard basis vectors of Rn as

te0, e1, . . . , en´1u.

When referring to, say, the element ei of the above list, we shall call it the “index
i element” so as to not confuse it with the ith element of the list (which one would
probably agree is ei´1).

3.2.3 Geometric realisation

The geometric realisation |K| of a simplicial complex K is a CW complex with the
set of k-cells in bijection with elements α P K with pk ` 1q elements. The idea of the
construction is simple enough, so we’ll leave a couple of details to the appendix; the
example below should make the process clear. Let us assume for notational simplicity
that the vertices of K are totally ordered, so for every v0, v1 P K either v0 ď v1 or
v1 ď v0; if both then v0 “ v1 and if v0 ď v1 and v1 ď v2 then v0 ď v2. So whenever
tv0, v1, . . . , vnu P K we can and will assume that v0 ď v1 ď ¨ ¨ ¨ ď vn are listed in
order.

One starts with the 0-skeleton |K|0, which is the discrete space with points in bijection
with singletons tvu P K. For each point of this space we have the characteristic map
σtvu : ∆0 Ñ |K|0, where ∆0 is the standard 0-simplex (the one point space) and the map
σtvu simply determines which point corresponds to which singleton tvu P K.

We may build the k-skeleton from the pk ´ 1q-skeleton from similar information. For
each α “ tv0, . . . , vku P K with pk ` 1q elements we wish to attach a k-disc. We may
as well attach the standard k-simplex ∆k, which is homeomorphic. The boundary of
∆k is a union pk ´ 1q-simplex faces. Each such may be specified by removing an index
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j element from te0, . . . , eku. We attach that face (after canonically identifying it with
the standard pk´ 1q-simplex) to |K|k´1 according to how we attach the pk´ 1q-simplex
α̂j “ tv0, . . . , v̂j, . . . , vku, where v̂j indicates that this term is to be omitted from the list.
That cell is attached via σα̂j , defined one step down the construction.. Doing the same
for each face determines a map attaching the boundary of ∆k to the pk ´ 1q-skeleton.
Repeat for every other element of K of pk ` 1q-elements. By glueing the k-simplices to
the pk ´ 1q-skeleton along their boundaries in this way, this builds the k-skeleton and
defines the characteristic maps attaching the cells, which determines the topological
space |K| as a CW complex.

Example 3.2.1. Figure 3.2.2 illustrates the geometric realisation of the simplicial com-
plex K, given as follows:

K “ ttv0u, tv1u, tv2u, tv3u, tv4u, tv5u, tv6u,

tv0, v1u, tv1, v2u, tv0, v2u, tv2, v4u, tv3, v4u, tv4, v5u, tv3, v5u, tv3, v6u, tv4, v6u, tv5, v6u, tv0, v6u,

tv0, v1, v2u, tv3, v4, v5u, tv3, v4, v6u, tv4, v5, v6u, tv3, v5, v6u,

tv3, v4, v5, v6uu.

v0

v1 v2 v4

v5

v6

v3

Figure 3.2.2: The geometric realisation |K| of the simplicial complex K.

Definition 3.2.3. A topological space X is called triangulable if it permits a trian-
gulation, which is a simplicial complex K along with a homeomorphism

h : |K| Ñ X.

It is helpful to think of a triangulated space as a space which has a subdivision into
distorted simplices, see Figure 3.2.3.

Rather than abstractly glueing together simplices according to the combinatorial data
of K, usually one can build |K| by filling in simplicies within an ambient Euclidean space
RN using appropriately placed vertices, which is really what Figure 3.2.2 is doing; see
Appendix C for details.

Remark 3.2.1. Simplicial decompositions are more awkward than you may first ex-
pect. Figure 3.2.4 suggests two simplicial-ish decompositions of the torus. The one
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Figure 3.2.3: Space triangulated by simplicial complex K from above example.

Figure 3.2.4: A non-simplicial decomposition of T2 (left) and a valid simplicial one (right).

on the left is not a simplicial decomposition as defined here. Note that in simplicial
complexes every simplex α P K is uniquely defined by its set of vertices. The charac-
teristic maps σα of the n-simplices into the geometric realisation always turn out to be
homeomorphisms; in particular, no identifications are made on the boundaries of the
simplices. In the left-hand decomposition there is only one vertex, so there are lots
of identifications along the boundaries of cells; for example, the 1-cells give embedded
circles rather than intervals.

One can make mild alterations so as to allow the flexibility offered by decompositions
like that on the left. In [Hat] these are called ∆-complexes. The definition of the
simplicial chain complex, as we are about to see, works essentially identically for them.
However, we shall be satisfied for now with the more classical simplicial complexes as
defined. The flexibility offered by ∆-complexes will be achieved later in the yet more
general setting of cellular homology for CW complexes.

3.2.4 The simplicial chain complex

In this section, for a simplicial complex K, let us refer to an element α P K with n` 1
elements as an n-simplex. We shall assume for ease of notation, as before, that our
simplicial complexes K come equipped with a total order on their set of vertices and
that when we write down an n-simplex α “ tv0, . . . , vnu we list the elements v0, . . . , vn
in order. Thus, given also some j P t0, . . . , nu, there is an associated pn ´ 1q simplex
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(considered as a face of α) given by

α̂j – tv0, . . . , v̂j, . . . , vnu,

where the fancy hatted term v̂j indicates that it is to be omitted from the list.

Chains will be given by Z-linear sums of the simplices. Boundaries will be defined by
sums over faces α̂j of simplices, consistently signed to get the orientations right:

Definition 3.2.4. Let K be a simplicial complex. Define the degree n simplicial
chain group CnpKq to be the free Abelian group generated by the n-simplices of K, so

CnpKq –
à

n-simplicies of K
Z.

Its elements (called n-chains) can thus be considered as finite formal sums

σ “
ÿ

`αα

where the sum is taken over the set of n-simplicies α of K, the coefficients `α P Z and
are zero for all but finitely many n-simplicies α P K. The sum of such a chain with
another σ1 “

ř

`1αα is given by

σ ` σ1 “
ÿ

p`α ` `
1
αqα,

(i.e., the coefficient of an n-simplex α in the chain σ`σ1 is just the sum of the coefficients
of α in σ and σ1). The chain 1 ¨ α P CnpKq, the sum of just one n-simplex α P K, is
called an elementary chain and may sometimes, by a slight abuse of notation, also
be denoted simply by α.

For n ě 1, the degree n (simplicial) boundary map Bn : CnpKq Ñ Cn´1pKq is
defined on an elementary chain α by

Bnpαq–
n
ÿ

j“0

p´1qjα̂j.

Since every chain of CnpKq is a linear sum of elementary chains, we may thus define
the boundary map Bn by extending linearly to all chains, i.e., by setting

Bnp
ÿ

`ααq–
ÿ

`αpBnpαqq.

This defines the simplicial chain complex

C˚pKq– ¨ ¨ ¨
B3
ÝÑ C2pKq

B2
ÝÑ C1pKq

B1
ÝÑ C0pKq

B0
ÝÑ 0.

The homology of this chain complex is denoted by H˚pKq and is called the simplicial
homology of K.
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Example 3.2.2. Consider again the simplicial complex K from Example 3.2.1. Let
σ P C2pKq be given by assigning coefficient ´2 to tv0, v1, v2u (in red in Figure 3.2.5),
coefficient `1 to tv3, v4, v6u (in green), `1 to tv4, v5, v6u (in blue) and zero to the other
2-simplices. Applying the definition of the boundary map we get the sum

B2pσq “
´

´2tv1, v2u`2tv0, v2u´2tv0, v1u

¯

`

´

tv3, v4u´tv3, v6u

¯

`

´

tv4, v5u`tv5, v6u

¯

.

Note that the coefficients of the tv4, v6u terms cancel. The arrows in the figure indicate
the orientations on the edges of the complex of non-zero coefficient in the boundary,
pointing from vi to vj for i ă j.

v0

v1 v2 v4

v5

v6

v3´2 `1

´1`1
´2

´2

`2 `1

´1

`1

`1B2

σ B2pσq

Figure 3.2.5: Illustration of σ P C2pKq and its boundary chain.

Notice that flipping arrows on edges with negative coefficient results in a sum of cyclic
loops. This is a visual representation of the fact that the boundary is a cycle, that is,
remember, a chain with zero boundary. To make sure that the simplicial chain complex
is well defined, we need to check more generally that two consecutive applications of
the boundary map Bn´1 ˝ Bn (B2 for short) results in the zero homomorphism:

Lemma 3.2.1. We have that B2 “ 0 in the simplicial chain complex C˚pKq.

Proof. Obviously if n ď 1 then Bn´1˝Bn “ 0 automatically, since in that case Bn´1 maps
into the trivial group. Otherwise, by linearity, we just need to check that B2 “ 0 holds
when applied to elementary chains α. The simplices involved in the sum defining B2pαq
are given by removing two vertices, some vi and vj, from α, where i, j P t0, . . . , nu
denote the respective indices in α. Moreover, such a simplex β occurs precisely twice
in the sum. One occurrence corresponds to when vi is removed first, by Bn, and then
vj is removed by Bn´1; the other case is when vj is removed first and then vi is removed
second. Interchanging the rôles of i and j if necessary, we may as well assume that i ă j.
Then vj is the index pj ´ 1q element of α̂i (since removing vi drops vj down one spot),
and vi is the index i element of α̂j. So the occurrence of β in the sum with vi removed
first has coefficient p´1qip´1qj´1, and the only other occurrence, with vj removed first,
has coefficient p´1qjp´1qi. These coefficients have opposite signs, so it follows that β
has coefficient zero in B2pαq. The same logic applies to every other pn ´ 2q-simplex of
the sum defining B2pαq, so B2pαq “ 0.
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At the moment, simplicial homology as we have defined it is not defined on spaces but
rather on abstract simplicial complexes. So we make the following definition:

Definition 3.2.5. Let X be a topological space which is triangulated by K. We define
the simplicial homology of X as the simplicial homology of K:

H˚pXq– H˚pKq.

There is a glaring issue with the above definition: how can we be sure that the simplicial
homology of a space does not depend upon which particular triangulation we use?
Thankfully, it turns out not to:

Theorem. The simplicial homology of a space is isomorphic to its singular homology.

Corollary 3.2.1. The simplicial homology of a space is well defined up to isomorphism.
Moreover, homotopy equivalent triangulable spaces have isomorphic simplicial homology.

Singular homology will be defined in the next section. We shall see why the above
theorem holds in Section 4.5.2, although will skip a couple of details since a later
theorem equating cellular and singular homology is in spirit a generalisation of it (The-
orem 4.5.1).

The above corollary follows from the theorem and Corollary 3.3.1, that homotopy equiv-
alent spaces have isomorphic singular homology.

Equipped with at least some faith that simplicial homology is a well-defined homotopy
invariant for triangulable spaces (I really do promise), let’s look at some examples:

Example 3.2.3. Consider the simplicial complexK consisting of just a single 0-simplex,
which triangulates the one point space ˚. Then the simplicial chain complex is trivial
outside of degree zero, and looks like:

¨ ¨ ¨ Ñ 0 Ñ 0
B1
ÝÑ ZÑ 0.

So H0p˚q – Z and Hnp˚q “ 0 for n ‰ 0.

Example 3.2.4. Let K be the obvious simplicial complex with which one triangulates
the interval, consisting of two 0-simplicies and a 1-simplex: K “ ttv0u, tv1u, tv0, v1uu.
The degree 0 chain group is isomorphic to Z2 and the degree 1 chain group is isomorphic
to Z, the chain complex looks like:

¨ ¨ ¨ Ñ 0 Ñ Z B1
ÝÑ Z2

Ñ 0.
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The chain group C1pKq is generated by the elementary chain of the single 1-simplex
e– tv0, v1u. The boundary map on it is defined by:

B1peq “
1
ÿ

j“0

p´1qj êj “ ê0 ´ ê1 “ tv1u ´ tv0u.

This final term is a difference of the generators of C1pKq – Z2. So the B1 boundary
map can be thought of as

B1 : ZÑ Z2, B1pnq “ p´n, nq.

Hence kerpB1q “ 0 and H1pKq – 0. We have that impB1q is the subgroup of elements of
the form p´n, nq for n P Z. Since B0 is the zero map, kerpB0q – Z2. So it is easy to see
that

H0pKq– kerpB0q{ impB1q – Z,
since taking the quotient of Z2 by the subgroup of elements of the form p´n, nq is to
identify precisely the elements pm, 0q » pm´ n, nq.

This complex has the same homology as the one point space. We already expected
that: the interval is contractible i.e., homotopy equivalent to the one point space.

Example 3.2.5. Let n P N and consider a set V “ tv0, . . . , vnu of n ` 1 elements.
Construct the 1-dimensional simplicial complexK over V which has 1-simplicies tv0, v1u,
tv1, v2u, . . . , tvn´1, vnu, tvn, v0u and no higher dimensional simplicies.

This simplicial complex gives a triangulation of the circle S1 by cutting it into n ` 1
intervals, so whatever n we pick we should get the same answer: “the” homology of the
circle.

The degree zero and one chain groups are isomorphic to Zn`1 (since there are n ` 1
0-simplicies and 1-simplicies), and the chain complex looks like

¨ ¨ ¨ Ñ 0 Ñ Zn`1 B1
ÝÑ Zn`1

Ñ 0.

On an elementary 1-chain ek – tvk, vk`1u (where we take vn`1 – v0) we have1 that
B1pekq “ tvk`1u ´ tvku. So for a 1-chain

σ “ c0e0 ` c1e1 ` ¨ ¨ ¨ ` cnen

we have σ P kerpB1q if and only if all of the coefficients ci P Z are equal. Indeed,
if cj ‰ cj`1 then the coefficient of vj`1 (which is a face of only ej and ej`1) will be
non-zero in the boundary. It follows that

kerpB1q “ tpm,m,m, . . . ,mq P
à

te0,...,enu

Z | m P Zu – Z.

1Here we should order tvn, v0u with vn before v0. With everything else having the obvious ordering,
this doesn’t come from a total order on the vertices V , as requested in our definition of the simplicial
boundary, but one can make a mild adjustment here to allow for just partial orders on the vertex set
which gives total orders on the simplices. Alternatively we just have a flip in sign for this one term.
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Think of such a cycle as a bit like an unbased loop around the circle, which carries some
weight m P Z.

Since away from degrees zero and one CnpKq – 0, we have that HnpKq – 0 for n ‰ 0, 1.
For degree zero it’s easy enough to see that H0pKq – Z; modding out by impB1q here is
to identify the elementary chains of tvku and tvk`1u. Generalising this argument, you
may like to try your hand at the following:

Exercise 3.2.1. Say that the simplicial complex K is connected if, for any two 0-
simplices tvu, twu P K, there exists a sequence of 0-simplices tv0u, tv1u, tv2u, . . . , tvku
with v0 “ v, vk “ w and each tvi, vi`1u P K a 1-simplex of K. Show that if K is
connected then H0pKq – Z.

Try extending this by proving a statement on the relationship between H0pKq and the
number of path-connected components of |K|.

Example 3.2.6. Let’s compute the homology of a more interesting example, the 2-
sphere S2. As a simplicial complex we may take it as B∆3, the set of proper faces of a
3-simplex. So it has four 0-simplicies:

V “ ttv0u, tv1u, tv2u, tv3uu,

six 1-simplicies:

E “ ttv0, v1u, tv0, v2u, tv0, v3u, tv1, v2u, tv1, v3u, tv2, v3uu

and four 2-simplicies

F “ ttv1, v2, v3u, tv0, v2, v3u, tv0, v1, v3u, tv0, v1, v2uu.

So the simplicial chain complex looks like:

¨ ¨ ¨ Ñ 0 Ñ Z4 B2
ÝÑ Z6 B1

ÝÑ Z4
Ñ 0.

Whilst perfectly manageable (and you may like to try it), it would take a bit of time to
write down all of the boundary maps here, and to work out the corresponding homology
groups. Let’s try a more clever way.

Enlarge the above simplicial complex by also adding in the 3-simplex α – tv0, v1, v2, v3u,
giving the simplicial complex corresponding to ∆3. Let us denote the simplicial chain
complexes of B∆3 and ∆3 by C˚pS

2q and C˚pD
3q, respectively. We thus have an in-

clusion of simplicial chain complexes C˚pS
2q ãÑ C˚pD

3q. The corresponding quotient
complex only has one generator in degree 3, corresponding to α, since all of the other
cells of ∆3 are in B∆3. So the quotient complex looks like

¨ ¨ ¨ Ñ 0 Ñ Z B3
ÝÑ 0 Ñ 0 Ñ 0 Ñ 0.
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Clearly the homology of that is H3 – Z and Hk – 0 for k ‰ 3. Applying the Snake
Lemma (Lemma 2.3.1) to the short exact sequence

0 Ñ C˚pS
2
q Ñ C˚pD

3
q Ñ C˚pD

3
q{C˚pS

2
q Ñ 0

we get the diagram

¨ ¨ ¨ H3pD
3q Z

H2pS
2q H2pD

3q 0

H1pS
2q H1pD

3q 0

H0pS
2q H0pD

3q 0

B˚

B˚

B˚

Since D3 is contractible and simplicial homology should return identical answers for
homotopy equivalent triangulable spaces, we have that H0pD

3q – Z and HkpD
3q – 0

for k ‰ 0 (the homology groups of the one point space). Filling that information in to
the above diagram, we see that the entries for HkpS

2q occur between zeros for k ‰ 0, 2,
and for k “ 0, 2 we get the exact sequences

0 Ñ ZÑ H2pS
2
q Ñ 0

and
0 Ñ H0pS

2
q Ñ ZÑ 0.

It follows that HkpS
2q – Z for k “ 0, 2 and HkpS

2q – 0 otherwise.

Exercise 3.2.2. Extend the above example by computing the simplicial homology of
Sk for any k P N0. As above, you may assume that the homology of a simplicial complex
triangulating a contractible space is that of the one point space.

3.3 Singular homology

3.3.1 What singular homology is and is not good for

We now introduce singular homology so as to have a theory which will apply directly
to any topological space. It is immediate from its definition that homeomorphic spaces
have isomorphic singular homology, which is not immediately apparent for simplicial
homology (in fact, with some extra work we will show that homotopy equivalent spaces
have isomorphic singular homology, see Corollary 3.3.1). Moreover, it will be clear how
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to make singular homology functorial over all continuous maps, so whenever we have
a continuous map f : X Ñ Y we have homomorphisms f˚ : HnpXq Ñ HnpY q. Sounds
great. The downside is that singular homology is essentially useless for direct computa-
tions. To actually compute, one typically uses tools such as long exact sequences arising
from decomposing a space into simpler pieces that are already understood (which we
will see in Chapter 4), or finds a simplicial/CW decomposition of the space of interest,
applying simplicial/cellular homology instead. Rather than a direct computational tool,
singular homology is a useful theoretical tool for showing that we at least have some
homotopy invariant functor, which one can use as a bedrock with which to compare the
other theories and prove that they are genuine homotopy invariants.

3.3.2 Restricting functions on simplices

Let f : ∆n Ñ X be a function. Given j P t0, . . . , nu we have the pn ´ 1q-dimensional
face ∆̂n

j Ă ∆n, with vertices te0, . . . , êj, . . . , enu, where the term êj is omitted. We can
restrict f to this face, denoted

f | ∆̂n
j : ∆̂n

j Ñ X.

Sometimes it will be useful, though, to first canonically identify ∆̂n
j with the standard

pn´ 1q-simplex ∆n´1, so as to compare two such maps. So we denote by

fænj : ∆n´1
Ñ X

the restriction of f to the index j face of ∆n, but first canonically identifying this face
with the standard pn ´ 1q-simplex by the obvious affine map which takes the vertices
of ∆n´1 bijectively and in order to those of ∆̂n

j . Explicitly, we can read ænj as simply
the map æ : ∆n´1 Ñ ∆n defined by

æ
n
j pt0, . . . , tn´1q– pt0, . . . , tj´1, 0, tj, . . . , tn´1q,

where the ‘0’ is inserted at index j. We shall sometimes drop the superscript of ænj .

For i ă j note the special formula

æjæi “ æiæj´1.

The composition on the left first inserts a zero at index i, then at index j. The second
one inserts a zero at index j´ 1 and then at index i, which bumps up the zero inserted
before by one spot to index j, since i ă j. In particular, the index i face of the index j
face is the same as the index pj ´ 1q face of the index i face.
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3.3.3 Definition of singular homology and basic examples

Definition 3.3.1. A continuous map α : ∆n Ñ X is called a singular n-simplex of
X. We define the singular chain group CnpXq as the free Abelian group of singular
n-simplicies of X, so

CnpXq –
à

singular n-simplicies of X

Z.

An element of CnpXq is thus a finite sum

σ “
ÿ

`αα

where the sum is taken over the set of singular n-simplices α of X, the coefficients
`α P Z and are zero for all but finitely many singular n-simplices α. The sum of such a
chain with another σ1 “

ř

`1αα is given by

σ ` σ1 “
ÿ

p`α ` `
1
αqα

(i.e., the coefficient of a singular n-simplex α in the chain σ ` σ1 is just the sum of
coefficients of α in σ and σ1). The chain 1 ¨ α P CnpXq, the sum of just one singular
n-simplex, is called an elementary chain and may sometimes, by a slight abuse of
notation, also be denoted simply by α.

For n ě 1 the degree n (singular) boundary map Bn : CnpXq Ñ Cn´1pXq is defined
on an elementary chain α by

Bnpαq–
n
ÿ

j“0

p´1qjpαæjq,

(remember, æj means: restrict α : ∆n Ñ X to the index j face of ∆n, but first implicitly
identifying this with the standard pn ´ 1q-simplex ∆n´1). Since every chain of CnpXq
is a linear sum of elementary chains, we may thus define the boundary map Bn by
extending linearly to all chains, i.e., by setting

Bnp
ÿ

`ααq–
ÿ

`αpBnpαqq.

This defines the singular chain complex

C˚pXq– ¨ ¨ ¨
B3
ÝÑ C2pXq

B2
ÝÑ C1pXq

B1
ÝÑ C0pXq

B0
ÝÑ 0.

The homology of this chain complex is denoted by H˚pXq and is called the singular
homology of X.

Remark 3.3.1. Any continuous map α : ∆n Ñ X counts as a singular n-simplex. The
map could be far from injective for example (hence singular simplex). For most spaces
the singular chain complex is ginormous. For example, the generators of C0pIq can be
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identified with the set of points of I (a map ∆0 Ñ X is a map from the one point
space to X, so it’s just a choice of point). So C0pIq – Zc, where c is the uncountable
cardinality of the continuum (the cardinality of R or I). In fact, the number of singular
n-simplicies ∆n Ñ I for other values of n is also c (unimportant Exercise: why?).

As before, we should check that this really does define a chain complex:

Lemma 3.3.1. We have that B2 “ 0 in the singular chain complex C˚pXq.

Proof. The trick of the proof is essentially the same as that of Lemma 3.2.1. Like there,
when considering B2pαq for an elementary n-chain α (with n ě 2), the sum involves
singular pn´2q simplicies β given by restrictions to faces by deleting two vertices. Such
a singular simplex β appears twice in the sum, depending on which order the vertices
are deleted, appearing with opposite signs as in the proof of Lemma 3.2.1. These are
the terms (for i ă j):

pαæjqæi “ pαæiqæj´1.

This equality has already been mentioned, see the discussion at the bottom of Sec-
tion 3.3.2. Thinking the other way around, you can see this as coming from the fact
that the face corresponding to removing the index i term of te0, . . . , êj, . . . , enu is the
same as that of removing the index pj´1q term from te0, . . . , êi, . . . , enu, since ej moves
down one spot after we’ve removed ei.

There aren’t too many examples that we can compute by direct means. Consider the
following though:

Exercise 3.3.1. Let ˚ be the one point space. Find the singular chain complex of ˚
and compute its homology.

Exercise 3.3.2. Show that the degree zero singular homology H0pXq is isomorphic to
Zn, where n is the cardinality of the set of path-components of X.

Exercise 3.3.3. Show that H˚p
š

αXαq –
À

αH˚pXαq. That is, the homology of a
disjoint union of spaces is the direct sum of the homologies of those spaces.

Exercise 3.3.4. This one is more tricky: try to compute by direct means the degree
one singular homology of the circle as H1pS

1q – Z. It may help to think in terms of
winding numbers: a map α : ∆1 Ñ S1 determines a ‘starting point’ in S1, where the
left endpoint of the interval is mapped to by α, and some number of radians through
which the map winds around the circle as it traverses the interval to reach the ‘terminal
point’, given by where α maps the right end point to.
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Lemma 3.3.2. Let X be a convex subspace of RN . Then

HkpXq –

#

Z for k “ 0;

0 otherwise.

(In the language of later Section 4.2, the ‘reduced homology’ of X is trivial).

Proof.

Exercise 3.3.5. There aren’t many spaces that one may compute the singular homol-
ogy of directly, so I think proving the above is an instructive exercise. Let me give the
main hints though, and we can discuss further details in class.

Just for notational ease, replace the singular chain complex of X with the ‘reduced’
version, given by ‘augmenting’ it in degree ´1:

rC˚ “ ¨ ¨ ¨
B3
ÝÑ C2pXq

B2
ÝÑ C1pXq

B1
ÝÑ C0pXq

ε
ÝÑ ZÑ 0.

The ‘augmentation’ map ε is the map which sends a 0-chain
ř

`αα to
ř

`α. This has
the effect of just killing a Z term of H0pXq; for more discussion see Section 4.2. If at
present this seems confusing, you may prefer to just think about degree zero in the
following discussion separately instead.

To prove the lemma you can then find a chain homotopy from the identity chain map
on the above complex to the zero map (c.f., Exercise 2.2.10). That is (Definition 2.2.7),
you should show that there exist homomorphisms cn : CnpXq Ñ Cn`1pXq for which:

σ “ cn´1pBnσq ` Bn`1cnpσq. (3.3.1)

Write in short:
Bpcσq “ σ ´ cpBσq.

We have used the notation cn instead of hn because you can construct the map cn via
a ‘cone’ like construction. The final equation above represents the intuitive idea that
the boundary of the cone is given by its ‘base’ σ and (appropriately signed) cone of its
boundary cpBσq, which is its ‘sides’.

To give more details so you can start the proof: given a singular n-simplex α : ∆n Ñ X,
there is a simple way of defining an associated singular pn` 1q-simplex cα. The idea is
to just fix any old point x0 P X throughout and define cα as a singular pn` 1q-simplex
which is just α when restricted to the ‘base’ face of ∆n`1, and is defined on the rest of
the simplex by stretching out α in a linear fashion so that the tip of ∆n`1 (the vertex
opposite to the base face) is sent to x0. This can be done by convexity, see Figure 3.3.1.
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x0

α cα

Bpcαq

`

´`

Figure 3.3.1: A 1-simplex α in some convex space (left), the 2-simplex cα (centre) and its
boundary Bpcαq “ α´ cpBαq (right).

3.3.4 Functorality: induced maps

Definition 3.3.2. Let f : X Ñ Y be a continuous map. We define the degree n chain
map fn : CnpXq Ñ CnpY q on an elementary n-chain α by

fnpαq– f ˝ α : ∆n
Ñ Y.

This defines a homomorphism fn : CnpXq Ñ CnpY q by extending linearly i.e., given an
arbitrary chain σ “

ř

`αα we define

fnp
ÿ

`ααq–
ÿ

`αfnpαq.

This defines a chain map f7 : C˚pXq Ñ C˚pY q. The induced map of this chain map
is denoted f˚ : H˚pXq Ñ H˚pY q.

Lemma 3.3.3. The above definition is well defined: f7 is a chain map, that is, Bn˝fn “
fn´1 ˝ Bn.

Proof. As ever, it suffices to check the equality on elementary chains. Given an elemen-
tary n-chain α we have that

Bnpfnpαqq “ Bnpf ˝ αq “
n
ÿ

j“0

p´1qjpf ˝ αqæj,

using the definition of Bn on the elementary n-chain f ˝ α. Composing the other way
we get

fn´1pBnpαqq “ fn´1p

n
ÿ

j“0

p´1qjpαæjqq “
n
ÿ

j“0

p´1qjf ˝ pαæjq,

as fn´1 is defined on the sum from its definition on the elementary chains αæj and
extending linearly. By associativity pf ˝ αqæj “ f ˝ pαæjq and the result follows.

Lemma 3.3.4. Singular homology defines a functor Hnp´q from the category Top of
topological spaces and continuous maps to the category Ab of Abelian groups and group
homomorphisms. That is:
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• for a topological space X we have an Abelian group HnpXq;

• for a continuous map f : X Ñ Y we have an induced map, a homomorphism
f˚ : HnpXq Ñ HnpY q;

• the induced map id˚ : HnpXq Ñ HnpY q of the identity map is the identity homo-
morphism;

• for two continuous maps f : X Ñ Y and g : Y Ñ Z we have that pg˝fq˚ “ g˚˝f˚.

Proof. The first two items were included just as a reminder of what data one needs for
a functor, they hold by our definitions. Consider the identity map idX : X Ñ X. By
the definition of the corresponding chain map id7 we have that id7pαq “ idX ˝α “ α
on an elementary n-chain α, so id7 is the identity chain map and id˚ is the identity
homomorphism on HnpXq (taking homology is a functor, Lemma 2.2.1). Suppose then
that f and g are two continuous maps as in the statement of the lemma. On an
elementary chain α P CnpXq we have that

pg ˝ fqnpαq “ pg ˝ fq ˝ α “ g ˝ pf ˝ αq “ gnpf ˝ αq “ gnpfnpαqq.

So by extending linearly to all of CnpXq we have that the chain maps pg ˝fq7 and g7 ˝f7
agree. It follows (homology is a functor, Lemma 2.2.1) that the compositions of induced
maps also agree.

3.3.5 Homotopy invariance

It turns out that we can do a lot better than what is stated in the above lemma:
homology actually defines a functor from the homotopy category (Section 1.2) hTop to
Ab:

Theorem 3.3.1. Suppose that f, g : X Ñ Y are homotopic maps. Then the induced
maps f˚, g˚ : H˚pXq Ñ H˚pY q are equal.

Before proving this theorem, let’s see what good this can do for us. Suppose that X
and Y are homotopy equivalent spaces, so there exist f : X Ñ Y and g : Y Ñ X with
g ˝ f » idX and f ˝ g » idY . Then

g˚ ˝ f˚ “ pg ˝ fq˚ “ pidXq˚ “ idH˚pXq

and
f˚ ˝ g˚ “ pf ˝ gq˚ “ pidY q˚ “ idH˚pY q .

The first equalities are just functorality (of composition), the second homotopy invari-
ance, and the final ones functorality again (of identities). So f˚ : H˚pXq Ñ H˚pY q is
an isomorphism with inverse g˚ and we have shown the following:
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Corollary 3.3.1. If X and Y are homotopy equivalent spaces then H˚pXq – H˚pY q.

This corollary implies, for example, that the homology H˚pXq of a contractible space
X is the same as that of a point, namely isomorphic to Z in degree zero and trivial in
other degrees (see Example 3.2.3 or Exercise 3.3.1). Following Exercise 3.2.2, we may
compute the simplicial homology of the n-sphere (n ą 0):

HkpS
n
q –

#

Z for k “ 0, n;

0 otherwise.

Allowing ourselves to assume that simplicial and singular homology agree (which they
do, but we have not proved that yet), we have thus developed enough tools to cover all
of the ingredients of the proof in the introduction of the Brouwer Fixed Point Theorem.
Homology is no longer a black box.

Proof of homotopy invariance

Rather than showing that all homotopic maps induce the same maps on homology, it
will save notation to restrict attention to those of the following sort:

Lemma 3.3.5. For any space X, the maps ι0, ι1 : X ãÑ X ˆ I given by ι0pxq– px, 0q
and ι1pxq “ px, 1q give chain homotopic maps C˚pXq Ñ C˚pX ˆ Iq.

If we can prove this lemma then the theorem follows. Indeed, suppose that f and g are
homotopic, with F : Xˆ I Ñ Y the homotopy with F px, 0q “ fpxq and F px, 1q “ gpxq.
We can write f “ F ˝ ι0 and g “ F ˝ ι1. Hence, assuming that ι0 and ι1 induce the
same maps on homology and simply using functorality:

f˚ “ pF ˝ ι0q˚ “ F˚ ˝ pι0q˚ “ F˚ ˝ pι1q˚ “ pF ˝ ι1q˚ “ g˚.

Proof of lemma. For n P N0, let ln (l for ‘lower’) denote the singular n-simplex ∆n Ñ

∆n ˆ I given by x ÞÑ px, 0q. Similarly, let un (u for ‘upper’) be given by x ÞÑ px, 1q.
The proof will largely come down to the following: we shall inductively define singular
pn` 1q-chains τn`1 P Cn`1p∆

n ˆ Iq so that

Bn`1pτn`1q “ un ´ ln ´ sn,

where sn is the singular n-chain given by placing (with appropriate signs) the chains
τn on the sides of the prism ∆n ˆ I. More precisely, let æj : ∆n´1 Ñ ∆n denote the
canonical inclusion of ∆n´1 as the index j face of ∆n (notation as in Section 3.3.2).
Then consider pæj, idq : ∆n´1 ˆ I Ñ ∆n ˆ I as the inclusion of the index j side of the
prism. We wish to define our chains τn`1 so that

Bn`1pτn`1q “ un ´ ln ´
n
ÿ

j“0

p´1qjpæj, idq7pτnq. (3.3.2)
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Denote the summation on the right by sn.

To start the induction, define τ1 : ∆1 Ñ ∆0 ˆ I to be the obvious singular 1-simplex
whose boundary is u0´l0 (it’s a path starting at p˚, 0q and ending at p˚, 1q). So Equation
3.3.2 is satisfied (taking by definition the sum s0 to be empty in this bottom degree).
Suppose then that τk have been constructed for k ď n satisfying the equation. The
right side of Equation 3.3.2, which we want to show is the boundary of some τn`1, is a
cycle. Indeed

Bnpun ´ ln ´ snq “ Bnpunq ´ Bnplnq ´ Bnpsnq “ Bun ´ Bln ´
n
ÿ

j“0

pæj, idq7pBτnq “

pBun ´ Blnq ´

˜

n
ÿ

j“0

p´1qjpæj, idq7pun´1 ´ ln´1q

¸

`

˜

n
ÿ

j“0

p´1qjpæj, idq7psn´1q

¸

.

The second equality just applies Equation 3.3.2 one step down. The first two bracketed
terms above cancel as is easily checked by applying the boundary maps to un and ln.
On the other hand, the right bracketed term is zero, for precisely the same reason
that B2 “ 0 (as in Lemma 3.3.1). That’s easy to see after expanding it out using the
definition of sn´1:

n
ÿ

j“0

p´1qjpæj, idq7

n´1
ÿ

i“0

p´1qipæi, idq7τn´1 “

n
ÿ

j“0

n´1
ÿ

i“0

p´1qjp´1qipæjæi, idq7τn´1 “ 0.

Since the right side of Equation 3.3.2 (which is already defined by induction) is a cycle,
it must be a boundary: recall from Lemma 3.3.2 that convex regions of RN , such as
∆nˆI, have trivial homology in higher degrees, so if the right hand side of the equation
was not a boundary then it would represent a non-zero element of Hnp∆

n ˆ Iq. So we
may construct the elements τn satisfying the equation by induction.

We now use the chains τn to construct a chain homotopy between the chain maps
induced by ι0 and ι1. For a singular simplex α : ∆n Ñ X we simply define

hnpαq– pα, idq7pτn`1q (3.3.3)

and extend linearly. Checking that this defines a chain homotopy is easy:

Bn`1phnpαqq “ Bn`1ppα, idq7pτn`1qq “ pα, idq7Bnpτn`1q “ pα, idq7pun ´ ln ´ snq.

The final term above is pι1q7pαq´pι0q7pαq´pα, idq7psnq (just write down the definitions!).
On the other hand

hn´1Bnpαq “ hn´1

˜

n
ÿ

j“0

p´1qjαæj

¸

“

n
ÿ

j“0

p´1qjpαæj, idq7τn “
n
ÿ

j“0

p´1qjpα, idq7 ˝pæj, idq7τn.
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This final term is pα, idq7psnq, which verifies that

Bn`1hn ` hn´1Bn “ pι1q7 ´ pι0q7,

so pι0q7 and pι1q7 are chain homotopic and hence induce the same maps on homology
by Lemma 2.2.2.

Remark 3.3.2. The proof above looks a little different to the typical proof of homotopy
invariance. What is usually done is to decompose the prism ∆nˆI combinatorially into
simplexes in a methodical way. I recommend also looking at this more standard style
of proof (see for instance [Hat, Theorem 2.10]). I like the above proof because it avoids
the particularities of a clever way of decomposing the prism associated to working with
simplices, although this is partially hidden in the proof of Lemma 3.3.2 showing that
convex subspaces have trivial homology. Equation 3.3.2 is essentially ‘decomposing’
the prism ∆n ˆ I as a singular chain, a Z-linear sum τn`1 of singular pn` 1q-simplices
whose boundary is the appropriately signed top, bottom and sides of the prism (the
sides being determined one step down the construction), so the two approaches are
ultimately the same idea.

3.4 Cellular homology

Just as simplicial homology could be applied to any simplicial complex K, and the
degree n chain group was the free Abelian group with generators corresponding to the
n-simplices, cellular homology is something which we can apply to any CW complex X‚

and will have degree n chain group the free Abelian group with generators corresponding
to the n-cells. This makes cellular homology an efficient tool, because one can often
find nice cellular decompositions of spaces without too many cells. For example, an
n-sphere can be given a CW decomposition with just two cells, of dimensions 0 and n.
The 2-torus can be given a CW decomposition into a 0-cell, two 1-cells and a 2-cell;
the usual simplicial decomposition (Figure 3.2.4) consists of nine 0-cells, twenty seven
1-cells and eighteen 2-cells! (one can do a little better, but not significantly).

For low dimensional pictures, the action of the boundary maps are ‘what one would
expect’. Rather than giving a formal definition of the boundary maps right away, we
shall first look at some illustrating examples. To give the formal definition we will need
to develop some more tools (mostly relative homology), which shall be done in the next
chapter. These tools firstly allow one to define the boundary maps formally, and then
their properties that we establish also serve as the main ingredients in the proof that
cellular and singular homology agree.

Definition 3.4.1. Let X‚ be a CW complex. The degree n cellular chain group
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CnpX
‚q is the free Abelian group generated by the n-cells of X‚, so

CnpX
‚
q –

à

n-cells of X‚

Z.

The cellular chain complex of X is given by

¨ ¨ ¨
B3
ÝÑ C2pX

‚
q
B2
ÝÑ C1pX

‚
q
B1
ÝÑ C0pX

‚
q Ñ 0.

The boundary maps Bn will be informally explained later in this section, and formally
defined in Definition 4.5.1. The homology of this chain complex is the cellular ho-
mology of X‚, denoted H˚pX

‚q.

Analogously to simplicial homology, the above definition does not apply to spaces but
to CW complexes, so we make the following definition:

Definition 3.4.2. Let X be a space with CW decomposition X‚. We define the
cellular homology of the space X as the cellular homology of the CW complex X‚:

H˚pXq– H˚pX
‚
q.

We shall see later that the cellular homology does not depend upon which particular
CW decomposition we chose for X:

Theorem 4.5.1. For a CW complex X‚ its singular homology is isomorphic to its
cellular homology.

Remark 3.4.1. As for simplicial homology, the theorem above means that our clash
of notation between singular, simplicial and cellular homology will not cause us issues.

Example 3.4.1. Let n ě 2. The n-sphere Sn can be given a CW decomposition of a
single 0-cell and a single n-cell, attached to the 0-cell by collapsing its whole boundary
to the point. So the cellular chain complex looks like:

¨ ¨ ¨
Bn`2
ÝÝÝÑ 0

Bn`1
ÝÝÝÑ Z Bn

ÝÑ 0
Bn´1
ÝÝÝÑ ¨ ¨ ¨

B2
ÝÑ 0

B1
ÝÑ ZÑ 0.

There’s no choice in the boundary maps here, they have to be the zero homomorphisms
and we can read off the homology as HkpS

nq – Z for k “ 0 or n, and HkpS
nq is trivial

otherwise. That agrees with our earlier calculations.

Example 3.4.2. Recall from Example 1.2.3 that real projective space RP k is the space
of lines through the origin of Rk`1. One can also define complex projective space
as the space CP k of ‘complex lines’ in Ck`1. By a ‘complex line’ we mean a set of
points of the form λz for some fixed non-zero z P Ck`1 and λ P C (so a ‘complex line’
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is topologically actually a plane). Then CP k is given by identifying w P Ck`1 ´ t0u
with z P Ck`1´t0u if there exists some λ with λw “ z; we give CP k the corresponding
quotient topology. By normalising, we can also define CP k “ S2k`1{ „, where „
identifies points w, z P S2k`1 (the sphere of unit vectors of Ck`1 – R2k`2) if there is a
(necessarily unit length) λ P C with λw “ z.

Just as how RP k can be given a CW decomposition with one cell in each dimension up to
k, complex projective space CP k can be given a CW decomposition with one cell in each
even dimension up to 2k. One nice consequence2 of this is that CP 1 “ pS3{ „q – S2.
Here’s a proof that such a CW decomposition exists.

Proof. We may consider CP 0 as the one point space (consisting of C as the only complex
line in C), so this satisfies the claim. Suppose for induction then that CP k´1 has
such a CW decomposition. Consider points pz,

a

1´ |z|2q P Ck`1 with |z| ď 1, where
z P Ck and |z| P R Ă C is just the Euclidean norm of z, thought of as an element of
R2k. Every point of CP k`1 ´ t0u is represented by an element of that form. Indeed,
given pz1, . . . , zk`1q, firstly multiply through by zk`1 (if non-zero) to make the final
entry real and non-negative. Then rescale the vector by dividing through by its norm
(that is, so that it belongs to S2k`1). For the resulting pz, tq P C2k ˆ C we have that
1 “ |pz, tq|2 “ |z|2`t2 so t “

a

1´ |z|2. The space of points of this form, just a choice of
|z| P C2k with |z| ď 1, is homeomorphic to a 2k-disc. The boundary of this disc consists
of those points with final entry zero, so points pz, 0q P C2k ˆ C with z P S2k´1. In the
quotient defining CP k, this subspace of points corresponds to CP k´1. On the other
hand, there are no identifications on the interior of the 2k-disc, since λpz,

a

1´ |z|2q
can only have final entry real if λ P R, and to preserve the modulus we would need
λ “ 1 or λ “ ´1; in the latter case we get a negative entry. So we have constructed
CP k by attaching a 2k-disc to CP k´1 and the result holds by induction.

It follows that the cellular chain complex for CP k has Z entries in all even degrees
n ď 2k, and are zero elsewhere. Thus the boundary maps either have domain or
codomain the trivial group and so are all trivial. Again, for this rather special example,
we don’t need to know the definition of the boundary map! It follows that

HnpCP k
q –

#

Z for n even and n ď 2k;

0 otherwise.

3.4.1 The cellular boundary map, informally

Now we shall explain how the boundary map works, and then look at a couple of low
dimensional examples. Since Bn is a homomorphism, to work out the boundary map on

2Interesting aside: the quotient S3 Ñ CP 1 – S2 is known as the Hopf fibration, and realises the
3-sphere as a ‘twisted product’ (more precisely, a fibre bundle) of S2 with S1 ‘fibres’.
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an arbitrary chain one just needs to know the coefficients dαβ P Z in the expression

Bnpeαq “
ÿ

pn´1q´cells eβ

dαβeβ,

where we identify an n-cell eα of the CW complex with its associated generator of
CnpX

‚q. We shall have more to say on what these coefficients are in Section 4.5.1.
Loosely speaking one proceeds as follows: firstly we have an orientation on eα deter-
mined by the map σα attaching the n-cell eα, and setting an orientation on Dn. The
orientation on Dn induces one on Sn´1. The characteristic map σα sweeps the bound-
ary Sn´1 over pn ´ 1q-cells eβ, perhaps with some multiplicity, which either preserves
or reverses orientations. Counted according to whether orientations are preserved or
reversed, this determines the coefficient dαβ. Again, more details in Section 4.5.1, see
also Figure 3.4.1.

Bcell
2

Figure 3.4.1: A cellular 2-chain, assigning coefficients 1 to the two green oriented 2-cells (and
zero to the others) and its boundary, assigning coefficient 1 to the edges with orientations
assigned according to the arrows.

For example, take a 1-cell eα. It is mapped into X via σα : D1 “ r´1, 1s Ñ X. With the
standard orientation on r´1, 1s, this positively orients the right endpoint and negatively
the left one. The right endpoint is mapped to some vertex er, and the left endpoint is
mapped to some vertex el. Then

B1peαq “ er ´ el. (3.4.1)

In degree two we attach a 2-cell eα via a map σα : D2 Ñ X. We imagine the standard
orientation of D2 orienting its boundary circle going anticlockwise. Suppose that σα
maps the boundary of D2 onto X1 nicely, in the sense that S1 can be subdivided into
finitely many open intervals, separated by points, with σα mapping those points into
the 0-skeleton and homeomorphically mapping each open interval onto some 1-cell eβ.
Each of these intervals is either mapped onto some eβ in a direction agreeing with the
orientation on eβ, contributing `1 to dαβ, or disagreeing, contributing coefficient ´1 to
dαβ.
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Example 3.4.3. Take S1 with CW decomposition of a single 0-cell v and single 1-cell
e. By Equation 3.4.1, B1peq “ v ´ v “ 0. So the cellular chain complex is

¨ ¨ ¨ Ñ 0 Ñ 0 Ñ Z ˆ0
ÝÑ
B1

ZÑ 0,

hence H0pS
1q – Z, H1pS

1q – Z and HnpS
1q – 0 otherwise.

Example 3.4.4. The square model for the torus, as in Figure 1.2.1, gives a CW de-
composition of the 2-torus T2 with one 0-cell, two 1-cells and one 2-cell. Each 1-cell is
attached so its head and tail is the single 0-cell (of course), so as above B1 “ 0. Ori-
entations for the 1-cells can be assigned, say, according to the arrows along the edges
of Figure 1.2.1. Attaching the 2-cell, we see that its boundary is glued in a way which
traverses each 1-cell twice: once in a direction which agrees with the orientation of the
cell, and once with the opposite orientation. The two contributions for cancel on each
1-cell, so B2 “ 0. So we get chain complex

¨ ¨ ¨ Ñ 0 Ñ 0 Ñ Z ˆ0
ÝÑ
B2

Z2 ˆ0
ÝÑ
B1

ZÑ 0,

hence H0pT2q – Z, H1pT2q – Z2, H2pT2q – Z and HkpT2q – 0 otherwise.

Exercise 3.4.1. Work out H˚pKq and H˚pRP 2q.

Exercise 3.4.2. Try to think about what the boundary map B3 should be for CW
decompositions where the 3-cells are attached ‘nicely’. One can construct the 3-torus
T3 – S1 ˆ S1 ˆ S1 from a cube whose opposite square faces are identified in a similar
way to the 2-torus (e.g., the ‘left-hand’ face is translated right 1 unit to identify it with
the ‘right-hand’ face). What should the cellular chain complex and homology be? Try
experimenting with this construction by glueing the faces in different ways (for example,
glueing opposite faces with a 90 degrees twist) and working out the homology.
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Chapter 4

Computational machinery for
homology

Homology would be an awkward tool if we had to start from scratch in computing it
for each new space encountered. What is needed are tools relating the homologies of
spaces which are associated via some form of construction. For example, if a space can
be decomposed into a union of subspaces A and B, it would be useful to know the
relationship between the homologies of the spaces A, B, AYB and AXB. Later in this
chapter we shall see that there is such a gadget, the Mayer–Vietoris sequence.

More important still is the case that we have a pair of spaces pX,Aq, of a space X with
subspace A Ď X. It would be nice to know the relationship between the homologies of
X, A and the quotient X{A. In the next section we shall introduce the relative homology
H˚pX,Aq of the pair pX,Aq, which morally plays the rôle of the homology of the
quotient space X{A. In fact, HkpX{Aq – HkpX,Aq when k ą 0 so long as the subspace
A is not embedded too pathologically into X, and in degree zero H0pX,Aq ‘ Z –

H0pX{Aq (so the relative homology corresponds to the so-called reduced homology of
X{A, Section 4.2). Just as for a pair of a chain complex and sub-chain complex we get
a long exact sequence from the Snake Lemma, for the pair pX,Aq we will get a long
exact sequence relating H˚pXq, H˚pAq and H˚pX,Aq.

One particular use of this comes from applying it to spaces with cellular decompositions.
For a CW complex X‚, consider the pair pXk, Xk´1q. Since Xk´1 is nicely embedded
into Xk, it will turn out that the relative homology H˚pX

k, Xk´1q can be thought of
as the (reduced) homology of the quotient Xk{Xk´1, which is a wedge of k-spheres, in
correspondence with the k-cells. This has homology concentrated in degree k as the
free Abelian group with generators in bijection with the k-cells, exactly the description
of the degree k chain group of the cellular chain complex. It is via this route that one
defines the boundary maps of the cellular chain complex and then proves that cellular
homology is isomorphic to singular homology.
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4.1 Relative homology

4.1.1 Definition of relative homology and the LES of a pair

Throughout this section we let pX,Aq be a topological pair, that is a space X with
subspace A Ď X. The singular chain complex C˚pAq of A can be naturally considered
as a sub-chain complex of C˚pXq, namely as the sub-chain complex whose degree n
chain groups are freely generated by singular n-simplices α : ∆n Ñ X with images
contained wholly in A. This really is a sub-chain complex, since if the image of α is
contained in A then so are the images of the terms of the boundary Bα.

We may consider the quotient complex C˚pXq{C˚pAq. By definition, remember, the
boundary map of the quotient complex will essentially correspond to the usual one,
but we identify any two n-chains σ1, σ2 P CnpXq if σ1 ´ σ2 P CnpAq (in particular,
σ represents the zero element if σ P C˚pAq). Let’s improve our notation by writing
C˚pX,Aq instead for the quotient complex.

The homology H˚pX,Aq of this complex is called the relative homology of pX,Aq.
Elements of HnpX,Aq are represented by relative cycles, n-chains σ P CnpXq for
which Bσ P CnpAq. Two relative cycles σ1, σ2 are identified in HnpX,Aq if there exists
some pn ` 1q-chain τ P Cn`1pXq with pσ1 ´ σ2q ´ Bτ P CnpAq, that is, if up to a
boundary their difference is a chain in A. See Figure 4.1.1. It’s sometimes useful to
let A “ H, in which case the relative homology HnpX,Hq is just the usual singular
homology HnpXq.

AX

Figure 4.1.1: The black 1-chain is a relative cycle, its boundary is in A. The green 1-chain
is also a relative cycle. In fact, unlike for the black 1-chain, it is a relative boundary so
represents zero in relative homology: its difference with the boundary of the yellow 2-chain is
a 1-chain, indicated by the dotted line, lying inside A.

The complexes C˚pAq, C˚pXq and C˚pX,Aq are of course related by a short exact
sequence of chain complexes (inclusion followed by quotient):

0 Ñ C˚pAq ãÑ C˚pXq Ñ C˚pX,Aq Ñ 0.
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We may apply the Snake Lemma (Lemma 2.3.1) to this to obtain the long exact
sequence of the pair pX,Aq:

¨ ¨ ¨ Hk`1pX,Aq

HnpAq HnpXq HnpX,Aq

Hn´1pAq Hn´1pXq Hn´1pX,Aq

Hn´2pAq ¨ ¨ ¨

q˚

B˚

ι˚ q˚

B˚

ι˚ q˚

B˚

ι˚

It’s often important to know not only the groups involved in the above LES, but also
the homomorphisms between them. The map ι˚ is the induced map of the inclusion
chain map i : C˚pAq ãÑ C˚pXq. This is the same thing as the induced map of the
inclusion map ι : A ãÑ X. The map q˚ is the induced map of the quotient chain map
q : C˚pXq Ñ C˚pX,Aq. It will turn out that in most cases of interest this corresponds
to the induced map of the quotient map f : X Ñ X{A (Theorem 4.4.1). Finally,
following Remark 2.3.1, the boundary map B˚ also has a nice description: any element
of HnpX,Aq is represented by a relative cycle σ P CnpXq. Then the connecting map
B˚prσsq applied to the homology class of σ is the homology class in Hn´1pAq of Bpσq.
Remember that since σ is a relative cycle, we do indeed have that Bpσq P Cn´1pAq.

Exercise 4.1.1. Describe H0pX,Aq for any pair pX,Aq.

Exercise 4.1.2. Let x P X. Describe H˚pX, txuq in terms of H˚pXq (try a LES).

Exercise 4.1.3. Consider a triple of spaces B Ď A Ď X. Show that there is a long
exact sequence of the triple relating the relative homologies of the pairs pX,Aq,
pX,Bq and pA,Bq.

4.1.2 Induced maps

It’s easy to make relative homology functorial. Given a map of pairs f : pX,Aq Ñ pY,Bq,
so f : X Ñ Y is continuous and fpAq Ď B, we get induced maps between the relative
homology groups f˚ : H˚pX,Aq Ñ H˚pY,Bq. This is induced by the chain map from
the non-relative case: in degree n we just set fnprσsq– rfnpσqs for σ P CnpXq.

It is then easily verified that relative singular homology Hnp´,´q defines a functor
from the category Top2 of pairs of topological spaces to the category Ab of Abelian
groups.
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Here is a simple application of the LES of a pair and the LES of a triple:

Lemma 4.1.1. Consider a triple of spaces pX,U,Aq, so A Ď U Ď X. Suppose that the
inclusion ι : A ãÑ U is a homotopy equivalence. Then the inclusion pX,Aq ãÑ pX,Uq
induces an isomorphism in relative homology.

Proof. First consider the LES of the pair pU,Aq:

¨ ¨ ¨
q˚
ÝÑ Hn`1pU,Aq

B˚
ÝÑ HnpAq

ι˚
ÝÑ HnpUq

q˚
ÝÑ HnpU,Aq

B˚
ÝÑ Hn´1pAq

ι˚
ÝÑ ¨ ¨ ¨ .

Since ι is a homotopy equivalence, ι˚ is an isomorphism on homology. It follows from
the above diagram that HnpU,Aq is trivial for all n P Z.

Now consider the LES of the triple pX,U,Aq from Exercise 4.1.3. If you write that
down, you will see that the trivial terms HnpU,Aq imply that the induced map of the
inclusion pX,Aq ãÑ pX,Uq is an isomorphism on relative homology.

Homotopy invariance

Remember from Theorem 3.3.1 that for two homotopic maps f, g : X Ñ Y the induced
maps f˚, g˚ : H˚pXq Ñ H˚pY q agreed. There is a relative version of this too:

Theorem 4.1.1. Suppose that f and g are maps of pairs from pX,Aq to pY,Bq i.e.,
they are continuous maps from X to Y mapping A into B. Suppose that f and g are
homotopic, so that there exists F : X ˆ I Ñ Y with F px, 0q “ fpxq and F px, 1q “ gpxq.
Moreover, suppose that each intermediate map x ÞÑ F px, tq for t P p0, 1q in the homotopy
is also a map between the pairs pX,Aq and pY,Bq. Then f˚ “ g˚ for the induced maps
f˚, g˚ : H˚pX,Aq Ñ H˚pY,Bq between relative homology groups.

Proof. We have the following maps of pairs:

f : pX,Aq Ñ pY,Bq, g : pX,Aq Ñ pY,Bq;

ι0 : pX,Aq Ñ pX ˆ I, Aˆ Iq, ι1 : pX,Aq Ñ pX ˆ I, Aˆ Iq;

F : pX ˆ I, Aˆ Iq Ñ pY,Bq.

The final map is a map of pairs by the assumption of the theorem. The maps ι0 and ι1
are just the inclusions x ÞÑ px, 0q and x ÞÑ px, 1q, respectively. Then as maps of pairs
f “ F ˝ ι0 and g “ F ˝ ι1.

Remember that to prove homotopy invariance in the non-relative case, we showed that
pι0q7 and pι1q7 were chain homotopy equivalent. The chains τn constructed in that proof
can be picked as before. We can use the same Equation 3.3.2 to define a chain homotopy,
since for a singular simplex σ : ∆n Ñ A we have that pσ, idq7pτn`1q is clearly a singular
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chain of C˚pAˆ Iq. It follows that phnq still gives a well defined chain homotopy, now
between the relative chain maps

pι0q7 » pι1q7 : C˚pX,Aq Ñ C˚pX ˆ I, Aˆ Iq.

The proof is then complete via the same argument following the statement of Lemma 3.3.5.

4.2 Reduced homology

Under certain conditions we want to think of the relative homology of pX,Aq as cor-
responding to the homology of the quotient X{A. If you followed through the above
exercises, you will have noticed that this can’t be so in degree zero. For example, the
relative homology of pX,Xq is going to be trivial in each degree (as all the chain groups
are trivial), but the quotient space is the one point space, which we computed before
as having H0 – Z.

This issue in degree zero is fixed by using instead reduced homology. We modify the
singular chain complex by ‘augmenting’ in degree ´1:

¨ ¨ ¨
B3
ÝÑ C2pXq

B2
ÝÑ C1pXq

B1
ÝÑ C0pXq

ε
ÝÑ ZÑ 0.

Here, the map ε is defined by εp
ř

`ααq –
ř

`α. Remember that in degree zero an
elementary chain α is essentially just a choice of point in X, so a chain is a finite
collection of Z-weighted points and ε just takes the sum of these weights. The homology
of this chain complex is called the reduced homology of X, denoted rH˚pXq.

Exercise 4.2.1. Consider the above construction but without any geometry involved:
take a chain complex C˚ which has Cn trivial for n ă 0 and suppose that there exists
some surjective map ε : C0 Ñ Z making

¨ ¨ ¨
B3
ÝÑ C2

B2
ÝÑ C1

B1
ÝÑ C0

ε
ÝÑ ZÑ 0

a chain complex, with homology rH˚. Implementing the Snake Lemma, or otherwise,
show that there are canonical isomorphisms H̃n – Hn for n ą 0, and in degree 0 we
have a short exact sequence

0 Ñ rH0 Ñ H0 Ñ ZÑ 0.

This is a SES with final term free Abelian so, by Corollary 2.4.1, H0 – rH0 ‘ Z.

Exercise 4.2.2. Another way to think about the reduced homology: for any space X,
consider the unique map p : X Ñ ˚, where ˚ is the one point space. Show that we
may identify rHnpXq as the subgroup of HnpXq given as the kernel of the induced map
p˚ : HnpXq Ñ Hnp˚q.
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Summing up the above exercises, we have isomorphisms

HnpXq –

#

rHnpXq for n ‰ 0;
rH0pXq ‘ Z for n “ 0.

So taking the reduced homology simply reduced the rank of H0pXq – Zn by one
(namely, to the number of path-components of X less one, see Exercise 3.3.2).

Remark 4.2.1. This may seem an unnatural homology group to assign to degree zero.
But in some ways it isn’t: one should think of HnpXq as detecting n-dimensional kinds
of ‘holes’ in X. In degree zero this corresponds to path-connectedness, so it’s perhaps
persuasive to think of a path-connected space as having no interesting homology in
degree zero. For the 0-sphere S0, in contrast, we have that rH0pS

0q – Z and is trivial
in other degrees. So the reduced homology is ‘generated’ by the principal feature of
disconnectedness of the two point space S0. As an aside, if you now take a look at
the proof of Brouwer’s Fixed Point Theorem in the introduction, you can see how
this disconnectedness is precisely the obstruction used to show the non-existence of
the retract of an interval to its endpoints. You’ve likely seen before the proof that
a continuous map f : r0, 1s Ñ r0, 1s has a fixed point. In this proof one considers
gpxq – fpxq ´ x. Assuming f doesn’t have a fixed point is to assume that gpxq ‰ 0
for all x. But gp0q ą 0 and gp1q ă 0, so one gets a contradiction by the intermediate
value theorem. The IVT is proved using the notion of connectedness. So really, the
proof of Brouwer’s Fixed Point Theorem as in the introduction is based upon the
same topological argument, but using higher dimensional obstructions than that of
connectedness for the higher dimensional cases.

Exercise 4.2.3. Let X be a space and x P X. Show that the reduced homology rH˚pXq
is isomorphic to the relative homology H˚pX, txuq (use Exercise 4.1.2).

Remark 4.2.2. Whilst we have an isomorphism rH˚pXq – H˚pX, txuq, it’s more natural

to consider rH0pXq as a subgroup of H0pXq (the subgroup of 0-cycles whose signed sums
are zero) versus H0pX, txuq as a quotient of H0pXq – Zn (given by collapsing the
generator corresponding to the path-component of x).

Following the above exercises, we see that there’s an explicit isomorphism between the
two given by the composition

rH˚pXq ãÑ H˚pXq� H˚pX, txuq,

where the first map is induced by the inclusion from Exercise 4.2.2 and the second is
induced by the inclusion pX,Hq ãÑ pX, txuq. It’s easy to see how to make reduced
homology functorial using induced maps as in the non-reduced case and one can essen-
tially replace appearances of reduced homology in diagrams with relative homologies of
a space relative to a point.
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For example, consider the triple txu Ď A Ď X. Using the above exercise and Exer-
cise 4.1.3, we have a reduced version of the LES of a pair:

¨ ¨ ¨ Hk`1pX,Aq

rHkpAq rHkpXq HkpX,Aq

rHk´1pAq rHk´1pXq Hk´1pX,Aq

rHk´2pAq ¨ ¨ ¨

q˚

B˚

ι˚ q˚

B˚

ι˚ q˚

B˚

ι˚

Of course, this only makes a difference in degree zero. This essentially just tidies away
some boring initial terms. The same LES results from applying the Snake Lemma to
the SES of chain complexes:

0 Ñ rC˚pAq
ι7
ÝÑ rC˚pXq

q7
ÝÑ C˚pX,Aq Ñ 0.

The chain map ι7 is induced by the inclusion map A ãÑ X (which we equate with
pA,Hq ãÑ pX,Hq), and q7 is induced by the inclusion of pairs pX,Hq ãÑ pX,Aq. The
relative complex C˚pX,Aq is ‘already reduced’ for A ‰ H.

4.3 Excision

4.3.1 Warm-up: simplicial excision

Let pX ,Aq be a simplicial pair, that is, a simplicial complex X with sub-complex A,
meaning a subset of simplices of X forming a simplicial complex in its own right. Just as
we defined relative singular homology, it is easy to define relative simplicial homology
for such pairs (and similarly, once we’ve defined the boundary maps, it is easy to
define relative cellular homology). The relative simplicial chain complex C˚pX ,Aq is
the quotient of the simplicial chain complexes C˚pX q{C˚pAq. In this chain complex we
identify chains lying in A with zero.

Consider a triple pX ,A,Bq of simplicial complexes, so that X is a simplicial complex
with a sub-complex A which in turn has sub-complex B. Let X ´B be the sub-complex
of X consisting of simplices which are neither in B nor are a face of an element of B
(check that this is a subcomplex). One can think of X ´B as given by removing ‘open
cells’ of B from X . Define A´ B analogously.
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Figure 4.3.1: On the left, a simplicial complex X (in grey, green and red) with sub-complex
A (in green and red) which in turn has a sub-complex B (in red). The relative homology of
pX ,Aq does not change if we remove from X and A open cells from B, as in the right-hand
picture.

Consider the two relative simplicial homology groups H˚pX ,Aq, H˚pX ´B,A´Bq. In
the second one we have ‘excised’ B. Doing so does not effect the homology calculations,
since the excised chains, those falling properly within B, already represent zero in
C˚pX ,Aq. That is, C˚pX ,Aq and C˚pX ´ B,A ´ Bq are isomorphic chain complexes
via the chain map induced by the inclusion of pairs pX ´ B,A´ Bq ãÑ pX ,Aq.

4.3.2 Excision for singular homology

What makes the above argument work is that if a simplex belongs to B then it definitely
belongs to A. We want a similar theorem to hold for singular homology: for a triple
pX,A,Bq we would like that H˚pX,Aq is isomorphic to H˚pX´B,A´Bq—we can excise
B—realised through the inclusion of pairs pX ´ B,A ´ Bq ãÑ pX,Aq. Unfortunately
the above argument won’t work since a singular simplex α : ∆n Ñ X can easily have
image intersecting B but also not lying entirely within A.

We at least need to assume thatB has some ‘wiggle room’ withinA; to make this precise:
for the closure of B to be contained in the interior of A. In this case, any singular
simplex intersecting B intuitively has some way to travel to escape A. Sufficiently
‘small’ singular simplices which intersect B would then have to be within A. To prove
excision for such pairs, then, one must firstly show that no harm is done by restricting
to ‘small’ singular simplices (this is Lemma 4.3.1 below).

We don’t have a metric, but we can make precise what we mean by ‘small’ here using
covers. Let X be a topological space and U be a collection of subsets whose interiors
cover X. For a singular simplex α : ∆n Ñ X we say that α is U -small if the image of
α is contained in some U P U ; similarly, a chain given as a Z-linear sum of U -small
singular simplices is also called U -small. For example, if X did happen to be a metric
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space, we could take U to be the set of balls of some radius ε ą 0, then a chain is
U -small if each singular simplex in its defining sum has image (‘support’) contained in
some ε-ball.

It is easy to see that the boundary of a U -small chain is still U -small, so these chains
form a chain complex, denoted CU

˚ pXq. For A Ď X we also have the relative complex
CU
˚ pX,Aq given as you’d expect by the quotient of CU

˚ pXq by the sub-complex of
U -small chains in C˚pAq.

The main technical hurdle in proving excision is that one may freely pass to U -small
chains without changing the homology:

Lemma 4.3.1. The inclusion ι : CU
˚ pXq ãÑ C˚pXq induces isomorphisms on homology.

The above is proved using a process called ‘barycentric subdivision’. We will need to
devote some space to the proof, so before doing that we give the following corollary and
then the proof of excision from the above lemma and the below relative version:

Corollary 4.3.1. For a pair of spaces the obvious inclusion ι : CU
˚ pX,Aq ãÑ C˚pX,Aq

induces isomorphisms on homology.

Proof. The ‘obvious inclusion’ simply takes rσs P CU
n pX,Aq to rσs P CnpX,Aq; note that

this is well-defined since rσs “ rσ1s in the U -small complex precisely if σ´ σ1 P CnpAq,
which is the identical equivalence relation defining CnpX,Aq.

We have a commutative diagram of short exact sequences of chain complexes:

0 CU
˚ pAq CU

˚ pXq CU
˚ pX,Aq 0

0 C˚pAq C˚pXq C˚pX,Aq 0

The maps here are the obvious inclusions and quotients, everything commutes. One
may apply the Snake Lemma, implementing also its naturality (Appendix A.1):

¨ ¨ ¨ HU
n`1pX,Aq HU

n pAq HU
n pXq HU

n pX,Aq ¨ ¨ ¨

¨ ¨ ¨ Hn`1pX,Aq H˚pAq HnpXq HnpX,Aq ¨ ¨ ¨

From Lemma 4.3.1 the vertical non-relative maps are isomorphisms. In this situation
the remaining vertical maps must be isomorphisms too (this follows from the Four
Lemma, Homework 2).
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Theorem 4.3.1 (Excision). Let X Ě A Ě B be a triple of spaces for which the closure
of B is contained in the interior of A. Then the inclusion of pairs i : pX´B,A´Bq ãÑ
pX,Aq induces is an isomorphism in relative homology:

H˚pX ´B,A´Bq
–
ÝÑ
i˚

H˚pX,Aq.

Proof. Take the couple of subspaces U – tX ´ B,Au. Their interiors cover X, since
intpX ´Bq “ X ´ clpBq and by assumption clpBq Ď intpAq.

Consider the following commutative diagram:

HU
˚ pX ´B,A´Bq HU

˚ pX,Aq

H˚pX ´B,A´Bq H˚pX,Aq

iU˚

ι˚ ι˚

i˚

Each map here is just one induced by a natural inclusion of chain complexes, so the
diagram certainly commutes. The vertical maps are isomorphisms by Corollary 4.3.1,
and we wish to show that the bottom horizontal map is an isomorphism. This follows
from the fact that ιU˚ is an isomorphism, which is the case for the analogous reasons of
the toy example in the introduction for simplicial complexes. Indeed the inverse chain
map to ιU7 is given by sending a generator chain rαs P CU

˚ pX,Aq, for α a U -small

singular simplex, to rαs P CU
˚ pX ´B,A´Bq if the support of α does not intersect B,

and to 0 if it does—we can safely do this since α is U -small, so in the latter case has
support wholly in A and hence rαs “ 0 in CU

˚ pX,Aq already anyway.

4.3.3 Proof of Subdivision Lemma 4.3.1

The main work in proving excision is the content of Lemma 4.3.1. With full details
the proof is relatively long-winded and I don’t expect you to be able to reproduce
it from memory. I haven’t moved the proof to the appendix though, I think it is a
worthwhile exercise to go through it carefully and try to understand how and why it
works. Hopefully the outline below gives enough sign posts to indicate the main ideas.
Figures 4.3.2 and 4.3.3 should be persuasive in demonstrating that we may ‘cut up’ a
singular chain to a smaller one.

Outline

1. For all spaces X, we inductively construct subdivision operators, chain maps
SdX˚ : C˚pXq Ñ C˚pXq. These are defined in terms of barycentric subdivision
of the standard n-simplex (Figure 4.3.2) which is then extended in a natural way
to all chains (Figure 4.3.3).
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2. We show that these are indeed chain maps (Equation 4.3.4) and are natural with
respect to maps between spaces (Equation 4.3.3).

3. We identify how to construct a chain homotopy hXn : CnpXq Ñ Cn`1pXq from the
subdivision operator to the identity, imposing again a naturality condition with
respect to continuous maps (Equation 4.3.5), and the chain homotopy formula
(Equation 4.3.6). As for the construction of the subdivision operator, everything
is determined by what happens to the standard simplex.

4. The existence of the chain homotopy is proved by exploiting the vanishing homol-
ogy of ∆n (c.f., the proof of homotopy invariance, Theorem 3.3.1).

5. Assuming that repeated application of subdivision always eventually results in
U -small chains, we prove the statement of the lemma using subdivision and the
chain homotopy.

6. Finally, we prove that repeated application of subdivision does indeed always
eventually result in U -small chains.

Figure 4.3.2: The standard 2-simplex ∆2, re-projected to R2 (left), the images of the singular
2-simplices defining the first barycentric subdivision of λ2 (centre) and a second application
of barycentric subdivision (right).

Step 1: constructing the barycentric subdivision operator

Let K Ď RN be a convex subspace (later in this proof K “ ∆n). We will briefly
reuse a cone-type construction from the proof of Lemma 3.3.2. Given x0 P K and a
singular n-simplex α : ∆n Ñ K, we define cx0n pαq as the singular pn ` 1q-simplex given
by ‘stretching α linearly from base α to tip x0’, see Figure 3.3.1. I’ll give you the explicit
formula now: for x “ pt0, t1, . . . , tn`1q P ∆n`1, define

pcx0n pαqqpxq–

#

t0x0 ` p1´ t0qαp
pt1,...,tn`1q

1´t0
q for t0 ‰ 1;

x0 for t0 “ 1.

This is extended to Z-linear sums of singular simplices, as usual, Z-linearly. Hopefully
you wrote something similar before and proved the following:

Bn`1pc
x0
n σq “ σ ´ cx0n´1pBnσq. (4.3.1)
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Although not relevant for the proof to follow, technically this formula does not hold
for n “ 0, but it does in the reduced complex; for n “ 0 the occurrence of B0 above
should be instead the augmentation map and cx0´1 sends n P Z to n times the singular
0-simplex mapping the point of ∆0 to x0.

Now we define our barycentric subdivision operator in an inductive fashion. Let X
be a space. In degree zero barycentric subdivision does nothing, SdX0 pσq “ σ for
σ P C0pXq.

Suppose then that SdXk has been constructed for k ă n (for all spaces X). The singular
n-simplex id∆n : ∆n Ñ ∆n, which we denote by λn, acts as a seed for all others, in the
sense that for any singular n-simplex α : ∆n Ñ X we have that as an elementary chain
α “ α7pλ

nq. So we start with explicitly defining the subdivision of λn:

Sd∆n

n pλ
n
q– cd

n

n´1pSd∆n

n´1pBnλ
n
qq. (4.3.2)

Here, dn stands for the ‘barycentre’ p 1
n`1

, . . . , 1
n`1
q of ∆n. In English: the subdivision

of the n-simplex is defined by first subdividing its boundary pn´ 1q-simplices, and then
extending these via cones to the barycentre. Figure 4.3.2 shows a couple of applications
of barycentric subdivision in dimension 2.

We then define SdXn for any singular n-simplex α : ∆n Ñ X by

SdXn pαq– α7pSd∆n

n pλ
n
qq.

That is, we first subdivide the standard simplex and then map from it with α. See
Figure 4.3.3. This defines SdXn on any n-chain by extending linearly. Note that there is
no clash in the definitions to Equation 4.3.2 if we apply the above formula to Sd∆n

n pλ
nq

since in that case λn7 is the identity chain map on C˚p∆
nq.

Exercise 4.3.1. Draw the barycentric subdivision Sd∆n

2 pλ2q as seen in Figure 4.3.2
yourself, but by carefully following the definitions (for example, you will need to also
draw the barycentric subdivision of λ1). I really recommend doing this exercise!

Step 2: Naturality and chain map property of subdivision

Subdivision is natural with respect to continuous maps f : X Ñ Y , which means:

f7 ˝ SdXn “ SdYn ˝ f7. (4.3.3)

Indeed, for a singular simplex α : ∆n Ñ X we have:

f7pSdXn pαqq–

f7α7Sd∆n

n pλ
n
q “ pf ˝ αq7Sd∆n

n pλ
n
q— SdYn pf ˝ αq “

SdYn pf7αq.
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Figure 4.3.3: A singular simplex α on X “ T2, and what it looks like after applying barycentric
subdivision.

Secondly, subdivision defines chain maps:

Bn ˝ SdXn “ SdXn´1 ˝ Bn. (4.3.4)

We prove this by induction on n.

This is trivially true for n “ 0 (both sides are zero). Suppose then that Equation 4.3.4
holds for k ă n. For a singular n-simplex α : ∆n Ñ X we have:

BnrSdXn pαqs–

pdefinitionq : Bnpα7rSd∆n

n pλ
n
qs–

pdefinitionq : rBnα7spc
dn

n´1pSd∆n

n´1pBnλ
n
qqq “

pα7 chain mapq : α7rBnc
dn

n´1spSd∆n

n´1pBnλ
n
qq “

pCone formula 4.3.1q : α7
`

Sd∆n

n´1pBnλ
n
q ´ cd

n

n´2prBn´1Sd∆n

n´1sBnλ
n
q
˘

“

pInduction for ch. map Eq. 4.3.4q α7
`

Sd∆n

n´1pBnλ
n
q ´ cd

n

n´2Sd∆n

n´2rBn´1Bnsλ
n
q
˘

“

pB
2
“ 0q : rα7spSd∆n

n´1Bnλ
n
q “

pnaturality Eq. 4.3.3q : SdXn´1prα7Bnλ
n
sq “

pα7 chain mapq : SdXn´1pBnαq

The elements in square brackets indicate what is changed to proceed to the line below,
with a description on that next line of what property is used.

Step 3: How to find a chain homotopy between subdivision and identity

We want a chain homotopy hXn : CnpXq Ñ Cn`1pXq between SdX˚ and the identity chain
map. We want these homomorphisms to be natural, in the sense that for a continuous
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map f : X Ñ Y we have that:
f7 ˝ h

X
n “ hYn ˝ f7. (4.3.5)

The homomorphisms defining a chain homotopy from Sd to id means that:

SdXn ´ id “ hXn´1 ˝ Bn ` Bn`1 ˝ h
X
n . (4.3.6)

Again, the singular simplex λn has a lot to say. Naturality implies that, for any singular
n-simplex α : ∆n Ñ X, we have:

hXn pαq “ hXn pα7λ
n
q “ α7h

∆n

n pλ
n
q,

so everything is determined by choosing h∆n

n pλ
nq appropriately; denote this choice by

τn`1 – h∆n

n pλ
nq. After choosing τn`1 we simply define hXn pαq – α7τn`1 for any n-

simplex α, and extend linearly. Equation 4.3.5 then holds since:

f7h
X
n pαq– f7α7τn`1 “ pf ˝ αq7τn`1 “ hYn pf ˝ αq “ hYn pf7αq.

Now, to satisfy the chain homotopy formula (Equation 4.3.6), we need the following of
our choices of τn`1:

Bn`1pτn`1q— Bn`1h
∆n

n pλ
n
q “ Sd∆n

n pλ
n
q ´ λn ´ h∆n

n´1pBnλ
n
q. (4.3.7)

Assuming that we have picked our τn`1 so that the above holds then the chain homotopy
formula Equation 4.3.6 holds for everything else too in the corresponding degree, since
then for a singular n-simplex α : ∆n Ñ X:

Bn`1ph
X
n pαqq–

pDefinitionq : Bn`1α7τn`1 “

pα7 chain mapq : α7Bn`1τn`1 “

pEquation 4.3.7q : α7pSd∆n

n pλ
n
q ´ λn ´ h∆n

n´1pBnλ
n
qq “

pNaturality of Sdn and hnq : SdXn pα7λ
n
q ´ α7λ

n
´ hXn´1pα7Bnλ

n
qq “

pα7 chain mapq : SdXn pαq ´ α ´ h
X
n´1pBnαq.

Step 4: Proving the existence of the chain homotopy

As a result, we have constructed our chain homotopy so long as we can find chains
τn`1 P Cn`1p∆

nq satisfying Equation 4.3.7. For n “ 0 the equation simply says:

B1pτ1q “ Sd∆0

0 pλ
0
q ´ λ0

´ h∆0

´1pB0λ
0
qq “ 0,

since SdX0 is the identity for degree zero. We can take τ1 as anything here (e.g., τ1 – 0),
the boundary of a singular 1-simplex in the one point space is always trivial (c.f.,
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Exercise 3.3.1). So suppose the chains τk`1 have been constructed satisfying Equation
4.3.7 for k ă n. The right hand side of Equation 4.3.7 is a cycle:

BnpSd∆n

n pλ
n
q ´ λn ´ h∆n

n´1pBnλ
n
qq “ Sd∆n

n´1pBnλ
n
q ´ Bnpλ

n
q ´ Bnh

∆n

n´1pBnλ
n
qq “

Sd∆n

n´1pBnλ
n
q ´ Bnpλ

n
q ´ rSd∆n

n´1pBnλ
n
q ´ Bnλ

n
´ h∆n

n´2pBn´1Bnλ
n
qs “ 0.

In the first equality we use that Sd∆n

n is a chain map and in the second we use the chain
homotopy formula Equation 4.3.6 one step down where it already holds by the induction
hypothesis and the reasoning following Equation 4.3.7. Since ∆n is contractible, we have
that Hn`1p∆

nq – 0, so since we have established that the right hand side of Equation
4.3.7 is a cycle it must also be a boundary and our desired τn`1 exists. This completes
the induction step and constructs our chain homotopy.

Step 5: Proof of Lemma assuming subdivisions eventually small

Now, suppose the following holds:

Claim: for any chain σ P CnpXq there exists some kσ P N0 with pSdXn q
kσpσq P CU

n pXq.

That is, for any chain σ, sufficiently many applications of the subdivision operator
produces a U -small chain. We will show that the lemma follows from this. To see that
the induced map on homology

ι˚ : HU
n pXq Ñ HnpXq

is onto, let σ be a cycle. Then σ1 – pSdXn q
kσpσq is a cycle in CU

n pXq and ι˚prσ
1sq “ rσs

in HnpXq. Indeed, σ and SdXn pσq are homologous by Equation 4.3.6 (their difference is
the boundary of hXn pσq). The subdivision of σ is homologous to its double barycentric
subdivision by the same argument. And so on; by inductive application of subdivision,
σ and σ1 are homologous.

We also need to show that ι˚ is injective. So suppose that ι˚prσsq “ 0. This means
that there exists some τ P Cn`1pXq with Bn`1pτq “ σ; the issue is that τ need not be
U -small. Consider a sufficiently large subdivision of τ though: let τ 1 “ pSdXn`1pτqq

kτ .
Then

pSdXn q
kτσ “ pSdnq

kτBn`1τ “ Bn`1pSdn`1q
kτ τ “ Bn`1pτ

1
q.

Now τ 1 is U -small, so we at least have that some iterated subdivision of σ is the
boundary of a U -small chain. But σ1 – pSdXn q

kτσ and σ are homologous in CU
˚ pXq.

This follows from the argument above, the difference of the subdivision of σ and itself
is the boundary of hXn pσq. This latter chain is easily seen to be U -small. Indeed,
remember that we defined hXn pαq – α7τn`1 for a singular simplex α. This is evidently
U -small if α is (this also shows that the subdivision of a U -small chain must still be
U -small). By linearity and iterating, σ is homologous via the boundary of a U -small
chain to σ1, which in turn is homologous via a U -small chain to zero, so σ represents
zero in HU

˚ pXq.
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Step 6: Subdivisions eventually small

To conclude the proof we just need to prove the above claim on the existence of kσ P N0.
The cover U of X gives a cover U 1 of ∆n by taking pre-images, which by continuity
still has interiors covering ∆n. Since SdXn pαq – α7Sd∆n

n pλ
nq for a singular simplex α,

we see that it is sufficient to show that for any such covering U 1 of ∆n, we have that
pSd∆n

n q
kpλnq is U ’-small for sufficiently large k. Call U 1 instead U from here on.

It is sufficient to show that the supports of the singular simplices of the sum defining
pSd∆n

n q
kpλnq become arbitrarily small in radius, because of the following:

Lemma 4.3.2 (Lebesgue Covering Lemma). Let pY, dq be a compact metric space and
U be a collection of subsets with interiors covering Y . Then there exists some number
LpU q satisfying the following: whenever S Ď Y is a subset of at most LpU q in radius
(i.e., dpx, yq ď LpU q for all x, y P S) then S Ď U for some U P U .

Exercise 4.3.2. If you don’t remember or haven’t seen it, give a proof of this lemma
(it’s fun).

Clearly there’s nothing to do in degree zero (0-chains are always U -small). As a result
of the above lemma, we now need to show that, for any r ą 0, there always exists
some kr with the singular simplices defining pSd∆n

n q
krpλnq of radius of support at most

r.

So suppose by induction that this has been proved for k ă n. Going right back to the
definition of the subdivision of λn, defined through a cone construction, we see that it
is a Z-sum of affine maps ∆n Ñ ∆n. To see that iterates of these affine maps eventually
have arbitrarily small support, it is enough to show that they are contractions; that is,
for each such α : ∆n Ñ ∆n, we want to show that |αpyq ´ αpxq| ă R|y ´ x| for some
R ă 1. It is not hard to see that this will be the case when each α maps vertices of ∆n

closer together.

The map æj is an isometry, so by induction distinct vertices of a term of Sd∆n

n pλ
nq which

lie in a boundary face of ∆n are closer to each other than in the standard simplex. The
only other vertex, by the definition of this subdivision, is sent to the barycentre of ∆n.
It is easily checked that the barycentre is closer to points of any given face of ∆n than
any two distinct vertices of ∆n are. So the vertices of the terms of the subdivision are
mapped closer together, and being affine that means that each is an affine contraction.
So for sufficiently large iterates the singular simplices have diameter smaller than the
Lebesgue covering number LpU q and the proof is complete.

Remark 4.3.1. We proved that the inclusion map induces isomorphisms on homology,
but in fact more is true: ι : CU

˚ pXq ãÑ C˚pXq is a chain homotopy equivalence, that is,
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there is a chain map ρ in the reverse direction with ιρ and ρι chain homotopic to the
identities. We will not need this fact, but you may like to prove it, see Homework 4.

4.4 Relative homology and quotients

Excision allows us to link together relative homology and homology of quotient spaces.
Consider a pair pX,Aq of a topological spaceX and a subspace A Ď X with the following
property: we assume that A is non-empty, closed and a deformation retract of some
neighbourhood U Ě A in X. Being a deformation retract means that there exists
a deformation retraction of U to A, which is a map F : U ˆ I Ñ U with F pu, 0q “ u,
F pu, 1q P A and F pa, tq “ a for all u P U , a P A and t P I. We then call pX,Aq a good
pair1. Most pairs of spaces that you come across will be good pairs, the following gives
an important example:

Exercise 4.4.1. Show that for a CW complex X‚ the pair pXk, Xk´1q is a good pair.

Example 4.4.1. As an example of something which is not a good pair, consider pR, Aq
where

A “ t0u Y t1{n | n P Nu.

Exercise 4.4.2. Prove that this is not a good pair: consider what would happen for
the deformation retraction near 0.

Another example of a pair which is not good is pRn, Sq where S is the famous ‘Topol-
ogist’s Sine Curve’. The case for no deformation retraction here is to do with S not
being ‘locally connected’; try to work out the details.

Lemma 4.4.1. Let pX,Aq be a good pair and q : pX,Aq Ñ pX{A,A{Aq be the quotient
map as a map of pairs. Then the induced map of q induces an isomorphism on relative
homology:

q˚ : H˚pX,Aq
–
ÝÑ
q˚

H˚pX{A,A{Aq.

Proof. Consider the triple pX,U,Aq where U Ě A is a neighbourhood of A which
deformation retracts to it. The quotient map above fits into the following commutative
diagram:

H˚pX,Aq H˚pX,Uq H˚pX ´ A,U ´ Aq

H˚pX{A,A{Aq H˚pX{A,U{Aq H˚pX{A´ A{A,U{A´ A{Aq

1If you are browsing other sources the more high-tech jargon to look out for here is of a cofibration.

81



The horizontal maps are just given from the corresponding inclusions of pairs of spaces,
and the vertical ones are induced by the quotient map. Our goal is to prove that the
left-hand vertical arrow is an isomorphism.

By assumption, U deformation retracts onto the subspace A, which induces a defor-
mation retraction of U{A to A{A in the quotient space X{A. So by Lemma 4.1.1
the left-hand horizontal maps are isomorphisms. The right-hand horizontal maps are
isomorphisms by excision, Theorem 4.3.1.

Since the horizontal arrows are isomorphisms, the theorem follows so long as one of the
vertical maps is also an isomorphism. And indeed the right-hand arrow must be, since
it is induced by the restriction of the quotient map as the following map of pairs:

q : pX ´ A,U ´ Aq Ñ pX{A´ A{A,U{A´ A{Aq.

This map is a homeomorphism of pairs as taking the quotient by A does not identify
points; obviously a point rxs P X{A with x R A is represented only by x. So the obvious
inverse to the map is rxs ÞÑ x for x P pX{A ´ A{Aq. Continuity follows from A being
closed, which is easily checked.

The subspace A{A of X{A is just a single point, so following Remark 4.2.2 the relative

homology H˚pX{A,A{Aq is just the reduced homology rH˚pX{Aq. This observation,
combined with the above lemma and the LES of the pair gives the following long
exact sequence of a quotient:

Theorem 4.4.1. Let pX,Aq be a good pair. Then we have a LES

¨ ¨ ¨ rHk`1pX{Aq

rHkpAq rHkpXq rHkpX{Aq

rHk´1pAq rHk´1pXq rHk´1pX{Aq

rHk´2pAq ¨ ¨ ¨

q˚

B˚

i˚ q˚

B˚

i˚ q˚

B˚

i˚

Here, i : A ãÑ X is the inclusion and q : X Ñ X{A is the quotient map.

Proof. Just apply the (reduced) LES of a pair to pX,Aq and replace the relative terms

of H˚pX,Aq by rH˚pX{Aq using the Lemma 4.4.1.

Although it may seem pedantic, technically we’re not quite done because we want to
equate q˚ with the map coming from the (reduced) LES of the pair. We have the
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following commutative square:

rH˚pXq H˚pX,Aq

rH˚pX{Aq H˚pX{A,A{Aq

q1˚

q˚ l

r

The map q1˚ is induced by the inclusion pX,Hq ãÑ pX,Aq coming from the (reduced)
LES of the pair. The map l is the isomorphism of Lemma 4.4.1. The map r is the
isomorphism of reduced homology with homology relative to a point discussed in Re-
mark 4.2.2. Thus when we replace H˚pX,Aq in the LES of the pair by rH˚pXq we can
swap the map q1˚ with q˚ via the isomorphism r´1˝ l identifying the two homologies.

4.4.1 Some applications of the LES of a quotient

Homology of spheres

Theorem 4.4.2. Let n P N0. The reduced singular homology of the n-sphere Sn is:

rHkpS
n
q –

#

Z for k “ n;

0 otherwise.

Proof. We may compute the singular homology of the two point space S0 directly (see
Exercise 3.3.1). So the theorem holds for n “ 0. We now proceed by induction. We have
the good pair pDn, Sn´1q of the n-disc and its boundary pn ´ 1q-sphere. The quotient
is Dn{Sn´1 – Sn. Apply the LES from Theorem 4.4.1. Since Dn is contractible its
reduced homology is trivial, so the terms involving homologies of spheres occur between
successive trivial groups:

0
q˚
ÝÑ rHkpS

n
q
B˚
ÝÑ rHk´1pS

n´1
q
i˚
ÝÑ 0.

Hence rHkpS
nq – rHk´1pS

n´1q for all k P Z and the result follows by induction.

This agrees with our earlier simplicial and cellular calculations (see Exercise 3.2.2 and
Example 3.4.1).

Homology of suspensions

Recall (Section 1.2) the definition of the suspension ΣX of a space X (take the product
of X with I, and pinch the top and bottom copies of X in X ˆ r0, 1s to points).

83



Theorem 4.4.3. For any space X we have that rHk`1pΣXq – rHkpXq.

Proof. Take the closed subspace Xˆt0u Ď CX, i.e., the base of the cone CX, which is
a homeomorphic copy of X. It isn’t hard to see that this is a good pair with quotient
homeomorphic to ΣX. The cone CX of X is contractible (Exercise 1.2.6) and so has
reduced homology that of the one point space, which is trivial in all degrees. The result
follows from the LES of the quotient.

Note that since ΣSn´1 – Sn (Example 1.2.2) this recovers the homology of the spheres
as above (really the proof here is just an extension of that argument, where Dn played
the rôle of CSn´1).

Homology of wedge spaces

Take a collection of pointed spaces pXα, xαq (so xα P Xα for each α). We define their
wedge sum

Ž

αXα as the quotient of the disjoint union
š

αXα by the disjoint union
of their base points

š

αtxαu. That is, we join the spaces Xα together at a single point.
Of course we have inclusions iα : Xα ãÑ

Ž

αXα for each of the spaces defined by the
quotient map.

Theorem 4.4.4. Suppose that each pXα, txαuq above is a good pair. The inclusion
maps induce an isomorphism

à

α

piαq˚ :
à

α

rH˚pXαq
–
ÝÑ rH˚p

ł

α

Xαq.

Proof. It is easy to see that since each pXα, txαuq is good, so is p
š

αXα,
š

αtxαuq. So
we apply the LES of the quotient of Theorem 4.4.1.

¨ ¨ ¨ rHk`1p
Ž

αXαq

rHkp
š

αtxαuq
rHkp

š

αXαq rHkp
Ž

αXαq

rHk´1p
š

αtxαuq
rHk´1p

š

αXαq rHk´1p
Ž

αXαq

rHk´2p
š

αtxαuq ¨ ¨ ¨

q˚

B˚

i˚ q˚

B˚

i˚ q˚

B˚

i˚

For k ‰ 0 we may replace the terms rHkp
š

αXαq with
À

α
rHkpXαq, see Exercise 3.3.3;

it is easy to check under this correspondence that q˚ translates to the homomorphism
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in the statement of the theorem. We can work out the reduced homology of the dis-
joint union of points directly (Exercise 3.3.1). This has trivial homology in positive
degrees. Moreover, we can show directly that i˚ is injective in degree zero. Putting this
information into the diagram, with a small extra adjustment in degree zero, the result
follows.

Application: mapping cones

Let f : X Ñ Y . The mapping cylinder of f is the space

Mf –
`

pX ˆ Iq
ž

Y
˘

{ „

where the equivalence relation defining the quotient identifies points px, 0q „ fpxq for
all x P X. That is, we glue the bottom of the ‘cylinder’ X ˆ I to a disjoint copy of Y
via the map f .

Remark 4.4.1. The inclusion i of X into the top of the cylinder is a ‘cofibration’ (in
the language here, the corresponding subspace and the mapping cylinder are a good
pair; Exercise: why?). There is a map f 1 which pushes the cylinder down onto Y (so
it leaves Y fixed and sends px, tq to px, 0q „ fpxq). This map is a homotopy equivalence
(Exercise: why?). So this construction shows that every map f can be factored as
f 1 ˝ i where i is a so-called cofibration (similar to an inclusion for a good pair) and f 1

is a homotopy equivalence.

The mapping cone Cf is the result of pinching the top of the mapping cylinder to a
point, so it is the quotient space

Cf –Mf{ „

where px, 1q „ px1, 1q for all x, x1 P X. It is also sometimes called the ‘homotopy
cofibre’.

Example 4.4.2. Let X “ Y and f “ idX . Then Cf “ CX. So the mapping cone is a
generalisation of the usual cone of a space.

Example 4.4.3. Suppose that X “ Sn and f : Sn Ñ Y . Then Cf is the space formed
by attaching an n-cell to Y , as is done in constructing a CW complex.

Exercise 4.4.3. Show that if f : A Ñ X is an inclusion then its mapping cone Cf
satisfies rHnpCf q – HnpX,Aq. Hint: consider the special subspace of the cone of A
sitting inside of Cf .

This example indicates that taking the mapping cone of an inclusion is the ‘homotopy
theoretic friendly way of taking the quotient’. In fact, it turns out that if pX,Aq is a
good pair then Cf » X{A.
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Theorem 4.4.5. Let f : X Ñ Y . We have a LES

¨ ¨ ¨ rHk`1pCf q

rHkpXq rHkpY q rHkpCf q

rHk´1pXq rHk´1pY q rHk´1pCf q

rHk´2pXq ¨ ¨ ¨

q˚

B˚

f˚ q˚

B˚

f˚ q˚

B˚

f˚

Hence the induced map f˚ is an isomorphism on homology if and only if the reduced
homology of Cf is trivial.

Proof. Just apply everything that was established above to the pair pMf , X ˆt1uq.

Application: invariance of dimension

Theorem 4.4.6. Let U Ď Rm and V Ď Rn be non-empty open sets. If U and V are
homeomorphic, then m “ n. In particular, Rm – Rn if and only if m “ n.

Proof. Let x P U be any point. We claim that

HkpU,U ´ txuq –

#

Z for k “ n;

0 otherwise.

The analogous thing holds for V . If this is the case then clearly U and V can only be
homeomorphic if m “ n, since a homeomorphism h induces a homeomorphism of pairs
pU,U ´ txuq Ñ pV, V ´ thpxquq and so an isomorphism of relative homologies.

To prove the above claim, first note that rH˚pU,U ´ txuq – rH˚pRm,Rm ´ txuq by
excision, so we may as well work with the latter. Since Rm is contractible, the LES
of the pair implies that HkpRm,Rm ´ txuq – rHk´1pRm ´ txuq. The space Rm ´ txu is
homotopy equivalent to the sphere Sm´1, so the result now follows from our previous
calculation (Theorem 4.4.2) of the homology of the sphere.

Whilst on the topic, an alternative way of proving this theorem is as a consequence of
invariance of domain2:

2It may be better to call this theorem “invariance of openness”. Domain here comes from an older
term for an open subset of Rn. It says, in particular, that two homeomorphic subsets of Rn are either
both open or both not open. The statement of the theorem could be read as ‘an embedding of an open
set of Rn into Rn is an open map’; this need not be true replacing Rn with other spaces.
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Theorem 4.4.7. Let U Ď Rn be open and f : U Ñ Rn be continuous and injective.
Then the image fpUq is also open in Rn.

See [Hat, Theorem 2B.3] for a proof of this from the Jordan–Brouwer Separation The-
orem, which we we will see later on.

4.5 Equating cellular and singular homology

Throughout this section, letX‚ be some fixed CW complex. The following three lemmas
establish some basic properties on the homology groups associated to the skeleta of a
CW complex, which we then combine them for a definition of the cellular chain complex
and proof that its homology agrees with the singular homology of X.

Lemma 4.5.1. The relative homology groups of successive pairs of the skeleta are as
follows:

HkpX
n, Xn´1

q –

$

&

%

À

n-cells

Z for k “ n;

0 otherwise.

Proof. We have that pXn, Xn´1q is a good pair (see Exercise 4.4.1) so its relative ho-
mology is that of the reduced homology of the quotient by Lemma 4.4.1. The quotient
space is a wedge of spheres, one for each n-cell, so the result follows from our calcula-
tion of the homology of spheres (Theorem 4.4.2) and the homology of a wedge of spaces
(Theorem 4.4.4).

Lemma 4.5.2. HkpX
nq is trivial for k ą n.

Proof. We certainly know this is true for X0, which is just a disjoint union of points.
Assume then, for induction, that the lemma holds up to the skeleton Xn´1. Apply the
LES of the pair pXn, Xn´1q:

¨ ¨ ¨
B˚
ÝÑ HkpX

n´1
q
ι˚
ÝÑ HkpX

n
q
q˚
ÝÑ HkpX

n, Xn´1
q
B˚
ÝÑ ¨ ¨ ¨ .

If k ą n we know the right-hand term is trivial by the previous lemma, and the left-hand
term is trivial by the induction assumption. So the result holds for Xn too.

Lemma 4.5.3. Consider the inclusion i : Xn ãÑ X and its induced map

i˚ : HkpX
n
q Ñ HkpXq.

Then i˚ here is an isomorphism if k ă n and is surjective if k “ n.
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Proof. Consider a LES like that of the previous proof:

¨ ¨ ¨
q˚
ÝÑ Hk`1pX

n`1, Xn
q
B˚
ÝÑ HkpX

n
q
ι˚
ÝÑ HkpX

n`1
q
q˚
ÝÑ HkpX

n`1, Xn
q
B˚
ÝÑ ¨ ¨ ¨

If k ď n then the right-hand term is trivial so ι˚ is surjective. If k ă n then the left-
hand term is trivial so ι˚ is injective. Now, for large N P N we can express the induced
map i˚ : HkpX

nq Ñ HkpX
Nq as the composition of maps ι˚ above, as the composition:

HkpX
n
q Ñ HkpX

n`1
q Ñ HkpX

n`2
q Ñ ¨ ¨ ¨ Ñ HkpX

N
q.

So from the above this composition is an isomorphism for k ă n and surjective for
k “ n (not necessarily injective, because of the first map). If X‚ is finite dimensional
then X “ XN for some N and we are done.

For the infinite dimensional case one can prove directly that any chain σ P CkpXq must
be supported on some finite dimensional skeleta. This is because it is a finite sum of
singular k-simplices ∆k Ñ X and so have compact image, and it turns out that any
compact subset of a CW complex meets only finitely many cells, so is contained in some
XN . As an Exercise you may like to fill in the details here: to prove that a compact
subset of a CW complex intersects only finitely many (open) cells, and then use this to
tie up the proof of the lemma.

Consider the LES of the pair pXn, Xn´1q, and similarly for pXn`1, Xnq. The term
HnpX

nq appears in both; line up the two sequences as follows:

¨ ¨ ¨ Hn`1pX
n`1, Xnq HnpX

nq ¨ ¨ ¨

¨ ¨ ¨ HnpX
nq HnpX

n, Xn´1q ¨ ¨ ¨

q˚ B˚

Bcelln`1

id

i˚

q˚ B˚

The new arrow Bcell
n`1 : Hn`1pX

n`1, Xnq Ñ HnpX
n, Xn´1q is simply defined as the com-

position q˚ ˝ B˚. This defines the cellular chain complex (and it really does defines it
this time!):

Definition 4.5.1. The cellular chain complex is the chain complex

¨ ¨ ¨
Bcell3
ÝÝÑ H2pX

2, X1
q
Bcell2
ÝÝÑ H1pX

1, X0
q
Bcell1
ÝÝÑ H0pX

0
q Ñ 0

where the boundary maps Bcell
n : HnpX

n, Xn´1q Ñ Hn´1pX
n´1, Xn´2q are defined as

above. The homology of this complex is called the cellular homology of X‚.

Note that the chain groups above in degree k are just the free Abelian groups with
generators in correspondence to the k-cells by Lemma 4.5.1, just as was the case for
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our earlier description in Definition 3.4.1. It is easily seen that the above is a chain
complex: if you consider Bcell

n`1˝B
cell
n then you get the composition pq˚˝B˚q˝pq˚˝B˚q. This

is slightly sloppy notation, because the two q˚ maps and two B˚ maps occur in different
snake diagrams. Ignoring that notational issue, rewriting as q˚ ˝ pB˚ ˝ q˚q ˝ B˚, note that
the middle composition does appear as two consecutive maps of a snake diagram, so
must be zero.

We now have the tools to show that the cellular and singular homology agree:

Theorem 4.5.1. For a CW complex X‚ its singular homology is isomorphic to its
cellular homology.

Proof. Let’s add some missing terms of the LES to the diagram above in blue (we shall,
just here, also add indices for the connecting maps of the snake diagrams):

Hn`1pX
n`1, Xnq HnpX

nq HnpX
n`1q 0

HnpX
nq HnpX

n, Xn´1q ¨ ¨ ¨

Bn`1

id

i˚ q˚

The ‘0’ term is there by the fact that HnpX
n`1, Xnq – 0 (Lemma 4.5.1). Moreover,

HnpX
n`1q – HnpXq by Lemma 4.5.3, the homology group we want to find! It follows

from exactness that:
HnpXq – HnpX

n
q{ impBn`1q. (4.5.1)

Now let’s investigate the next row down, adding extra blue terms:

Hn`1pX
n`1, Xnq HnpX

nq HnpX
n`1q 0

0 HnpX
nq HnpX

n, Xn´1q Hn´1pX
n´1q

Bn`1

id

i˚

i˚ q˚ Bn

The ‘0’ is there because HnpX
n´1q – 0 (Lemma 4.5.2). Hence q˚ is injective here, so

it maps HnpX
nq and impBn`1q isomorphically onto their images. By Equation 4.5.1:

HnpXq – q˚pHnpX
nqq{q˚pimpBn`1qq. Now, q˚pimpBn`1qq “ impq˚ ˝ Bn`1q “ impBcell

n`1q

just by the definition of the cellular boundary map. On the other hand, q˚pHnpX
nqq “

impq˚q “ kerpBnq by exactness, so:

HnpXq – kerpBnq{ impBcell
n`1q (4.5.2)
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Finally, looking at the next row down with new blue terms:

Hn`1pX
n`1, Xnq HnpX

nq HnpX
n`1q 0

0 HnpX
nq HnpX

n, Xn´1q Hn´1pX
n´1q

0 Hn´1pX
n´1q

Bn`1

id

i˚

i˚ q˚ Bn

id

i˚ q˚

The ‘0’ comes from the fact that Hn´1pX
n´2q – 0 (Lemma 4.5.2). So the q˚ at the

bottom of the picture is injective and kerpBnq “ kerpq˚ ˝ Bnq “ kerpBcell
n q. Combining

with Equation 4.5.2 completes the proof.

4.5.1 What is the cellular boundary map, really?

The above description of the cellular boundary map is a little abstract. It has a more
digestible form as the ‘cellular boundary formula’, which shall be stated below, given
in terms of the degree of a map on an n-sphere. We shall not give full proofs in this
section, see [Hat, Section 2.2] for details.

Let f : Sn Ñ Sn. Then f induces a homomorphism f˚ from rH˚pS
nq to itself. We

determined (Theorem 4.4.2) that the homology is concentrated in degree n where it is
isomorphic to Z. So in this degree f˚p`q “ dpfq ¨ ` for some unique number dpfq P Z
called the degree of f .

For a map f : S1 Ñ S1 the degree dpfq is just the winding number of f , which you’ve
likely met before. For a map f : S2 Ñ S2, I like to imagine the map as given by taking
a bin bag (the torn domain S2), putting the target sphere into it, wrapping the bag
around it a bit (allowing the bag to pass through itself), and then pulling the bag tight
and then fusing the hole of the bag shut. For a map which is not too weird, locally the
sheet of plastic passes flat in layers over a typical point x on the target sphere, either
keeping or reversing orientations. The number of times we lay the plastic down on such
a point, signed according to orientation, is the degree of the map. For more rigorous
details, see [Hat, Section 2.2].

One can use the degree, and some basic properties of it, to prove the famous result
that there is a non-zero vector-field on Sn if and only if n is odd. It can also be used
to describe the cellular boundary map. Let eα be a k-cell of X‚, attached via the
characteristic map σα : Dk Ñ X. Take a pk ´ 1q-cell eβ of X‚. Consider the following
composition:

Sk´1 σα
ÝÑ Xk´1 q

ÝÑ Xk´1
{pXk´1

´ eβq – Sk´1. (4.5.3)

The first map is the restriction of the characteristic map to the boundary sphere, which
maps into the pk´1q-skeleton, and the second is the quotient of Xk´1 collapsing pXk´1´
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eβq to a point. This space is homeomorphic to the pk´ 1q-sphere (a homeomorphism is
determined by σβ). The degree of this map is precisely the coefficient that the cell eβ
receives when taking the cellular boundary of eα. That is, if we refer to the map above
as fαβ then

B
cell
k peαq “

ÿ

k-cells eβ

dpfαβqeβ,

which is extended linearly to define the boundary map on an arbitrary cellular chain.
This is called the cellular boundary formula.

It is important to note that the signs of the coefficients of the cellular boundary formula
depend on the orientations of the cells, which are set by the choices of characteristic
maps attaching discs.

We’ve already looked at some basic examples, but just for a refresher let’s do another
couple:

Example 4.5.1. Take the closed surface Σg of genus g (with g ě 1, the ‘torus with g
holes’). There is a nice CW decomposition of this surface given by identifying the sides
of a 4g-gon. This results in a CW decomposition of one 0-cell, 2g 1-cells and one 2-cell,
so the chain complex looks like:

¨ ¨ ¨ Ñ 0 Ñ Z B2
ÝÑ Z2g B1

ÝÑ ZÑ 0

We know that H0pΣgq – Z (it is a path-connected space), so B1 is the trivial homo-
morphism. Moreover, if you draw the CW decomposition you have that every edge
contributes once in one direction to the boundary of the 2-cell, and then occurs once
more pointing in the opposite direction. This means that the contributions cancel and
B2 “ 0 as well. Hence:

HkpΣgq –

$

’

’

’

&

’

’

’

%

Z for k “ 0;

Z2g for k “ 1;

Z for k “ 2;

0 otherwise.

Example 4.5.2. The space RP 2 is obtained from the disc D2 by identifying the points
of the boundary circle under the antipodal map x ÞÑ ´x. You can give S1 a CW
decomposition into one 0-cell and one 1-cell, giving the following chain complex:

¨ ¨ ¨ Ñ 0 Ñ Z B2
ÝÑ Z B1

ÝÑ ZÑ 0.

As in the above example we know that H0pRP nq – Z so B1 “ 0. To work out B2, note
that D2 is attached to the 1-skeleton of RP 2 by winding twice around the 1-cell, which
with the 0-cell sits as a copy of RP 1 – S1 in RP 2. Hence B2pxq “ ˘2x, depending on
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choices of orientations, so

HkpRP 2
q –

$

’

&

’

%

Z for k “ 0;

Z{2 for k “ 1;

0 otherwise.

More generally, RP n has the following homology groups:

HkpRP n
q –

$

’

’

’

&

’

’

’

%

Z for k “ 0

Z{2 for 0 ă k ă n and k odd;

Z for k “ n if k is odd;

0 otherwise.

Homework Sheet 4 will lead you through the computation of this.

4.5.2 Comparing simplicial and cellular homology

Remember that a triangulation of a space X by K also defines a CW decomposition
of X. The simplicial chain complex that you get from K is isomorphic to the cellular
chain complex.

It is clear that the chain groups of the two are isomorphic (each are freely generated
by the simplicial cells). To prove that the cellular boundary maps correspond to the
simplicial boundary maps one needs to explicitly work out generators for the singular
homology groups Hkp∆

k, B∆kq – Z. It shouldn’t surprise you (and it is proved in
Homework 4) that this group is generated by the singular simplex id : ∆n Ñ ∆n. So for
a simplex α P K, with corresponding simplex ∆k

α of the geometric realisation, one has
that Hkp∆

k
α, B∆

k
αq – Z is generated by the map σα : ∆k Ñ ∆k

α used to attached the k-
simplex (which comes up in the explicit construction of |K|). Given a general simplicial
chain

ř

nαα this defines the cellular chain
ř

nαeα, and one may check that this defines
the required chain isomorphism. Following these ideas through leads to:

Theorem 4.5.2. For a space X triangulated by K, the simplicial chain complex of
K is isomorphic to the corresponding cellular chain complex, with CW decomposition
naturally induced by the triangulation. Hence, for a triangulated space, its simplicial,
singular and cellular homology groups all agree.
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4.6 Homotopy invariance of Euler characteristic

Recall from Section 1.2.2 that the Euler characteristic of a CW complex X‚ of finitely
many cells is given by the sum

χpXq–
8
ÿ

n“0

p´1qncn,

where cn is the number of n-cells in X‚. The homotopy invariance of singular homology
proves the following:

Theorem 4.6.1. Let X‚ and Y ‚ be two finite CW complexes. Suppose that X » Y .
Then χpXq – χpY q.

Proof. The Euler characteristic of X as defined above is equal to the Euler characteristic
of the cellular chain complex of X‚, as defined in Section 2.4, and similarly for Y . By
Theorem 2.4.1 the alternating sums of ranks of their cellular homology groups must
agree with the Euler characteristic. Since the cellular homology groups of X‚ and Y ‚

agree with the singular homology groups (Theorem 4.5.1) and the singular homology
groups of homotopy equivalent spaces agree (Corollary 3.3.1) the result follows.

Example 4.6.1. We already ran through some examples of Euler characteristic calcu-
lations in Section 1.2.2. Here’s an extra one: we have a CW decomposition of Σg of
one 0-cell, 2g 1-cells and one 2-cell, so χpΣgq “ 2 ´ 2g. You may remember that from
Geometric Topology II or Topology III, and now you have a proof that this number
really is a genuine invariant.

4.7 The Mayer–Vietoris sequence

4.7.1 Cellular version

Let X‚ be a CW complex with subcomplexes A‚, B‚ whose union is all of X‚. Their
intersection pA X Bq‚ is also sub-complex of A. We can relate the homologies of these
spaces:

Theorem 4.7.1 (Cellular Mayer–Vietoris Theorem). The cellular homologies of X, A,
B and AXB are related via the following long exact sequence:

¨ ¨ ¨
Bn`1
ÝÝÝÑ HnpAXBq

pηA˚ ,η
B
˚ q

ÝÝÝÝÑ HnpAq‘HnpBq
iA˚´I

B
˚

ÝÝÝÝÑ HnpXq
B˚
ÝÑ Hn´1pAXBq

pηA˚ ,η
B
˚ q

ÝÝÝÝÑ ¨ ¨ ¨ .

Here, the map ηA˚ is induced by the inclusion ηA : A X B ãÑ A and iA˚ is induced by
the inclusion iA : A ãÑ X; the maps ηB˚ and iB˚ are defined analogously. The map
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B˚ is defined on a homology class rσs P HnpXq by first expressing σ “ σA ´ σB, for
σA P CnpAq and σB P CnpBq, and then setting B˚prσsq to be the homology class of
Bcell
n pσAq “ B

cell
n pσBq in Hn´1pAXBq.

Proof. We have the following SES of chain complexes:

0 Ñ C˚pAXBq
pηA
7
,ηB
7
q

ÝÝÝÝÑ C˚pAq ‘ C˚pBq
iA
7
´iB
7

ÝÝÝÝÑ C˚pXq Ñ 0.

It is simple to verify that this is indeed a SES. The middle group is the direct sum
of two chain complexes, with degree n chain group the direct sum of the two degree
n chain groups and boundary defined by the usual one on each summand. It is easily
shown in that situation the homology is isomorphic in a natural way to the homology
of the individual chain complexes. Applying the Snake Lemma (Lemma 2.3.1), along
with Remark 2.3.1 on the connecting map completes the proof.

4.7.2 Singular version

Theorem 4.7.2 (Singular Mayer–Vietoris Theorem). Let X be a topological space with
subspaces A, B Ď X whose interiors cover X. Then the singular homologies of X, A,
B and AXB are related via the following long exact sequence:

¨ ¨ ¨
Bn`1
ÝÝÝÑ HnpAXBq

pηA˚ ,η
B
˚ q

ÝÝÝÝÑ HnpAq‘HnpBq
iA˚´I

B
˚

ÝÝÝÝÑ HnpXq
B˚
ÝÑ Hn´1pAXBq

pηA˚ ,η
B
˚ q

ÝÝÝÝÑ ¨ ¨ ¨ .

The homomorphisms in this LES have analogous descriptions to those in the cellular
version given earlier.

Proof. Let U “ tA,Bu. Consider the following SES:

0 Ñ C˚pAXBq
pηA
7
,ηB
7
q

ÝÝÝÝÑ C˚pAq ‘ C˚pBq
iA
7
´iB
7

ÝÝÝÝÑ CU
˚ pXq Ñ 0.

Note that we use U -small chains on the right here, which was necessary for surjectivity
of the right-hand map (note that the elements of CU

˚ are precisely those chains which
are sums of chains lying in C˚pAq and chains lying in C˚pBq). Again, checking this is
a SES is easy. Apply the Snake Lemma and replace the terms HU

n pXq with HnpXq by
Lemma 4.3.1 to complete the proof.

Note that there is also a reduced version of the Mayer–Vietoris sequence, given by just
replacing each occurrence of homology group with a reduced one.
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4.7.3 Some applications

Basic examples

I’ll leave it as an exercise to apply the Mayer–Vietoris sequence in these examples:

• Sn from Dk
` Y Dk

´: the union discs (upper and lower hemispheres) intersecting
along an equator homotopy equivalent to Sn´1.

• ΣX from CX`YCX´: the suspension as a union of two copies of the cone of X,
intersecting on a subspace homotopy equivalent to X.

• X
Ž

Y from X Y Y : the wedge sum of X and Y , intersecting in a subspace
homotopy equivalent to a point (you need to have good pairs for the inclusions of
the point into X and Y here);

• T2 from pS1 ˆ Iq1 Y pS
1 ˆ Iq2: the torus as a union of two annuli (or cylinders),

intersecting in the union of two homotopy equivalent S1 subspaces.

• K “ M̈1 Y M̈2: the Klein bottle as a union of two Möbius bands, intersecting
along a cylinder.

Try playing around with some decompositions of spaces into subspaces, perhaps try
finding one, say, for RP 2.

No embedding of Klein bottle in R3

We shall give a proof that the Klein bottle K does not embed ‘nicely’ into R3. Explicitly,
we shall prove that there is no injective continuous map i : KˆI ãÑ R3 from a ‘thickened’
version3 of K into R3.

?? picture

Denote Kε – impiq. This is the thickened version of K sitting inside R3. Consider a
very slight thickening C of the complement R3 ´Kε. We can work out the topology of
the intersection KεXC. The figure gives a model for KˆI as a ‘slab’ with identifications
along its faces. The intersection of the copy of this in R3 with C is a small thickening
of the front and back square faces with identifications. We can easily show that these
identifications give a copy of T2.

Apply the Mayer–Vietoris sequence to the decomposition of R3 as the union of Kε and C.
We know the homology of R3 (that of a point), of Kε (the same as that of a Klein bottle,

3Don’t worry too much about this ‘thickening’ part. This map would exist, say, if there was a
smooth embedding of the Klein bottle into R3. Most proofs I’ve seen on this end up making a similar
such simplifying assumption.
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in particular H1pKεq – Z‘ Z{2) and of the intersection Kε X C (homotopy equivalent
to a torus, in particular H1pT2q – Z2). Here is one portion of that diagram:

¨ ¨ ¨ Ñ H2pR3
q Ñ H1pKε X Cq Ñ H1pKεq ‘H1pCq Ñ H1pR3

q Ñ ¨ ¨ ¨ .

Filling in the information we know:

¨ ¨ ¨ Ñ 0 Ñ Z2
Ñ pZ‘ Z{2q ‘H1pCq Ñ 0 Ñ ¨ ¨ ¨ .

This implies that Z2 – pZ ‘ Z{2q ‘H1pCq. But there is no way this can be, since the
group on the right has 2-torsion (a non-trivial element x with 2x “ 0) but Z2 does not.
This is a contradiction, so the embedding of K into R3 cannot exist.

Exercise 4.7.1. Try a similar proof to show that RP 2 does not nicely embed into R3.

Application: Jordan Curve Theorem

Let f : S1 Ñ R2 be continuous and injective. So fpS1q is an embedded circle in the
plane. Obviously it splits the plane into two connected components, right? Yes and
no: the claim is true but it is not obvious—the first decent stab at a proof was in 1887
by Camille Jordan—there has been debate on whether or not his proof was sufficiently
complete. Either way, this result is still usually referred to as the Jordan Curve The-
orem. Note that for f a smooth map the claim is not difficult to prove, the issue is
that continuous maps can still be fairly wild (c.f., space-filling curves). The Alexander
horned sphere demonstrates what kinds of strange behaviours one can see in the higher
dimensional generalisation of this theorem, stated below:

Theorem 4.7.3 (Jordan–Brouwer Separation Theorem). Let f : Sn´1 Ñ Rn be con-
tinuous and injective, and define S – fpSn´1q. Then Rn ´ S consists of precisely two
path-connected components, one of which is bounded and the other is unbounded.

We essentially follow the proof from [Hat] here. To start with we re-frame the question
slightly: since we may view Sn as Rn with an extra point ‘added at infinity’ (as Sn –
Dn{Sn´1), we may consider S as an embedded pn ´ 1q-sphere in Sn rather than Rn.
The complement Sn ´ S is open so its connected components are also open in Sn and
hence are the same as its path components (it is easy to check that open connected
subspaces of Sn are also path-connected). Removing the single point (corresponding to
‘infinity’) from an open component doesn’t change whether or not it is path-connected,
so it will suffice to prove that Sn ´ S has precisely two path-components. This is the
same as proving that4:

rH0pS
n
´ Sq – Z.

4This isomorphism actually follows from a more general theorem known as Alexander duality which
you will meet next term. Alexander duality allows one to relate the homology of a subspace of the
sphere to the cohomology of its complement, which, by a universal coefficient theorem, can be related
to the homology of the complement.
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This will follow from the below lemma:

Lemma 4.7.1. Let f : Dd Ñ Sn be injective and continuous, and denote the image by
Q – fpDdq. Then the reduced homology of its complement is trivial: rHkpS

n ´ Qq – 0
for all k.

Corollary 4.7.1. Let f : Sd Ñ Sk be injective and continuous, and d ă n, and denote
the image by S – fpSdq. Then the reduced homology of the quotient is:

rHkpS
n
´ Sq –

#

Z for k “ n´ d´ 1;

0 otherwise.

Proof of Lemma 4.7.1. The lemma is proved by induction on the dimension d of the
embedded disc. For d “ 0 the result is obvious: Q is a single point of Sn so Sn´Q – Rn,
which is contractible and thus has trivial reduced homology.

Suppose then that the result is true for discs up to dimension d ´ 1 and let Q be an
embedded d-disc in Sn. It is the same to think of it as an embedded cube, as Dd – Id,
so replace f with a map f : Id Ñ Sn for Q “ impfq. To prove that Sn ´ Q has trivial

homology, we must show that any cycle σ P rCkpS
n ´ Qq is the boundary of some

τ P rCk`1pS
n ´Qq.

We know the result is true for the pd´1q-dimensional slices Qrts, given by the images of
f | pId´1ˆttuq Ñ Sn. The chain σ is still a chain of Sn´Qrts, so there exist pk`1q-chains
τt lying in the complement of Qrts with Bpτtq “ σ. Each τt is a finite sum of singular
simplices, so are supported on a closed subset of Sn not intersecting Qrts. By continuity
and compactness, fpId´1 ˆ pt´ εt, t` εtqq still lies in the complement of Qrts for some
sufficiently small εt. Again by compactness, finitely many of the Id´1 ˆ pt ´ εt, t ` εtq
cover the cube Id, so we can pick 0 “ t0 ă t1 ă t2 ă ¨ ¨ ¨ ă tN “ 1 with each rti, ti`1s

contained in some pt´ εt, t` εtq.

Denote the image of f restricted to Id´1ˆ ru, vs by Qru, vs. Since σ avoids Q it defines
a chain σ P CkpS

n ´ Qru, vsq for any u ď v. Similarly, by the above construction, for
each i there is some t P rti, ti`1s with τt avoiding Qrti, ti`1s. Since σ “ Bpτtq we have
that σ represents zero in HkpS

n ´Qrti, ti`1sq.

We claim that σ is a boundary in rCkpS
n ´ Qrt0, tisq for all i; recall that t0 “ 0 and

tN “ 1 so Qrt0, tN s “ Q so deducing this claim proves the lemma. For i “ 0 the
result is already known to be true by induction, Qrt0, t0s “ Qr0s (indeed, we defined
the boundary already as τ0). So suppose this holds up to i ´ 1. Consider A – Sn ´
Qrt0, ti´1s and B – Sn ´ Qrti´1, tis. Note that Qrt0, ti´1s X Qrti´1, tis “ Qrti´1s and
Qrt0, ti´1s YQrti´1, tis “ Qrt0, tis so:

AYB “ Sn ´Qrti´1s

AXB “ Sn ´Qrt0, tis.
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Moreover, it is easy to see that A and B are open subsets of A Y B (the Qru, vs are
compact in a Hausdorff space, hence closed). Applying the Mayer–Vietoris sequence:

¨ ¨ ¨ rHk`1pS
n ´Qrti´1sq

rHkpS
n ´Qrt0, tisq rHkpS

n ´Qrt0, ti´1sq ‘ rHkpS
n ´Qrti´1, tisq ¨ ¨ ¨

pηA˚ ,η
B
˚ q

By our original induction hypothesis, the first term is trivial, so the map pηA˚ , η
B
˚ q is

injective. Apply this to the homology class of σ. We know that its image in each
of the two summands is trivial; in the first by induction, and in the second from our
construction of the τt chains above. Hence σ must represent zero in rHkpS

n ´Qrt0, tisq
too, which completes the proof.

Proof of Corollary 4.7.1 from Lemma 4.7.1. As in the above lemma, we prove the re-
sult by induction. For d “ 0 we have that Sn ´ S is a sphere with two points removed,
which is homeomorphic to Rn with one point removed, which is homotopy equivalent
to Sn´1. By our calculation of the homologies of spheres, the result holds for d “ 0.

Suppose then that the result holds up to dimension d ´ 1. The d-sphere is the union
of two hemispheres, Dd

` and Dd
´ (with final coordinates in Rd`1 being ě 0 and ď 0,

respectively), each homeomorphic to discs and intersecting along an equator Sd´1 Ă Sd.
Denote D` – fpDd

`q, D´ – fpDd
´q and S 1 – fpSd´1q. The subspaces A – Sn ´D`

and B – Sn ´ D´ give an open cover of A Y B “ Sn ´ S 1, with A X B “ Sn ´ S.
Applying the Mayer–Vietoris sequence:

¨ ¨ ¨ rHk`1pS
n ´D`q ‘ rHk`1pS

n ´D´q rHk`1pS
n ´ S 1q

rHkpS
n ´ Sq rHkpS

n ´D`q ‘ rHkpS
n ´D´q ¨ ¨ ¨

By the lemma, the middle summand terms here are trivial, hence rHkpS
n ´ Sq –

rHk`1pS
n ´ S 1q. Remember that S 1 was an embedded sphere one dimension less than

that of S, so the result follows by induction.

A nice corollary of all of this is Brouwer’s Invariance of Domain, stated previously and
restated here:

Theorem 4.4.7. Let U Ď Rn be open and f : U Ñ Rn be continuous and injective.
Then the image fpUq is also open in Rn.

Proof. As for the proof of the Jordan–Brouwer separation theorem, it is the same to
compactify Rn to the n-sphere, and show instead that fpUq is open in Sn. Pick a point

98



of hpUq, say hpxq for x P U . We need to show that there is an open subset of Sn

contained in hpUq and containing hpxq.

Since U is open, we may pick a small enough closed disc D centred at x contained in
U . The boundary S of D is an pn´1q-sphere. We claim that fpD´Sq is open in fpUq,
from which the result follows.

By the Jordan–Brouwer Separation Theorem, Sn´fpSq has exactly two path-connected
components. These must be the obvious candidates: fpD´ Sq and Sn ´ fpDq. Indeed
they are disjoint, cover Sn´ fpSq and are path-connected: fpD´Sq is path-connected
because D ´ S is, and Sn ´ fpDq is path-connected because of Lemma 4.7.1. By
compactness of S, we have that Sn´fpSq is open in Sn from which it easily follows that
the two path-connected components of Sn ´ fpSq are also the connected components.
Remember that connected components are closed so, being as there are only two of
them, fpD ´ Sq must also be open in Sn ´ fpSq. Since Sn ´ fpSq is itself open in Sn,
we have that fpD ´ Sq is open in Sn, as desired.

4.8 Further topics

4.8.1 Eilenberg–Steenrod axioms for homology

Usually when using homology we work from its fundamental properties rather than its
basic definition. Eilenberg and Steenrod outlined the following important properties of
homology:

A homology theory consists of a sequence of functors Hnp´,´q (n P Z) from the category
Top2 of pairs of topological spaces to the category Ab of Abelian groups. We write
HnpX,Hq for the non-relative homology HnpXq, and for a map of pairs f : pX,Aq Ñ
pY,Bq we denote by f˚ the application of the functor to f (omitting here the degree).
These functors should satisfy:

—(Homotopy): If f , g : pX,Aq Ñ pY,Bq are homotopic as maps of pairs (in the
sense of Theorem 4.1.1) then f˚ “ g˚.

—(LES of pair): There exist natural homomorphisms B˚ : HnpX,Aq Ñ Hn´1pAq
(meaning that f˚B˚ “ B˚f˚ for f : pX,Aq Ñ pY,Bq) for which we have the LES of
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the pair:

¨ ¨ ¨ Hk`1pX,Aq

HnpAq HnpXq HnpX,Aq

Hn´1pAq Hn´1pXq Hn´1pX,Aq

Hn´2pAq ¨ ¨ ¨

q˚

B˚

ι˚ q˚

B˚

ι˚ q˚

B˚

ι˚

The maps ι˚ and q˚ are induced by the obvious inclusions of pairs.

—(Excision): If X has subspace A, which in turn has subspace B with the closure
of B contained in the interior of A, then the inclusion pX ´ B,A ´ Bq ãÑ pX,Aq has
isomorphisms as induced maps between homology groups.

—(Dimension) The homology Hnp˚q of the one-point space ˚ is trivial for n ‰ 0.

For the dimension axiom, the group H0p˚q is sometimes referred to as the coefficient of
the homology theory. Singular homology satisfies all of the above, and has coefficient
Z.

Milnor noticed that by adding the following axiom, also satisfied by singular homology,
the homology theory is completely determined on the category of pairs of spaces which
are homotopy equivalent to CW complexes:

—(Additivity): For a family of spaces Xα the inclusions iα : Xα ãÑ
š

αXα induce
isomorphisms

à

α

HnpXαq
–

ÝÝÝÝÑ
‘piαq˚

Hnp
ž

α

Xαq.

Next term you will meet cohomology. There are Eilenberg–Steenrod axioms for co-
homology theories too. They are almost identical: one essentially just needs to flip
arrows of induced maps, and replace the appearance of the direct sum

À

of groups in
the above additivity axiom with the product Π (in the product of groups, one allows
sequences where infinitely many of the terms are non-identity elements).

Dropping the dimension axiom allows for different examples of (co)homology theories
called generalised or extraordinary (co)homology theories. One of particular importance
is K-theory, which is based upon complex vector bundles over a space. It assigns
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the following cohomology groups to the one point space: Knp˚q – Z for n even and
Knp˚q – 0 for n odd.

4.8.2 Homology with coefficients

Keeping the dimension axiom, the question arises of what homology theory corresponds
to the case where H0p˚q – G for a given Abelian group G. By the result of Milnor,
such a homology theory satisfying all of the above axioms is determined on the class
of spaces homotopy equivalent to CW complexes (which are the spaces one typically
deals with in practice in most settings).

One may construct such a theory directly with only a mild alteration to how we con-
structed usual homology. In the definition of the singular chain complex C˚pXq, instead
of considering Z-linear sums of singular simplices, consider instead G-linear sums. This
defines a chain complex C˚pX;Gq. That is, an element σ P CnpX;Gq can be thought
of as a formal sum

σ “
ÿ

α

gαα

where each gα P G, each α is a singular n-simplex and gα is the zero element (the
additive identity) for all but finitely many α.

The boundary map has the obvious definition from the usual one: for α a singular
n-simplex and gα P G we let

Bnpgααq–
n
ÿ

j“0

p´1qjgααæj,

(here, we read ´g as the additive inverse of g). For a more general sum σ “
ř

gαα we
let

Bnpσq “
ÿ

α

Bnpgααq.

This defines the singular chain complex with G coefficients C˚pX;Gq. Note the
semi-colon rather than comma, as used for the relative homology. More abstractly,
one may define C˚pX;Gq via a tensor product C˚pXq b G. The homology of this
chain complex is denoted H˚pX;Gq, the homology of X with G coefficients. Using
the tensor product description of the chain complex one may relate the usual homology
(i.e., with Z coefficients) to the homology with G coefficients via the universal coefficient
theorem, which you will see next term.

Similar constructions apply to give relative singular homology H˚pX,A;Gq, or reduced

homology rH˚pX;Gq with G coefficients. One can also easily modify simplicial and
cellular homology to work with G coefficients. In this case, for cellular homology say,
rather than n-chains being given by assigning finitely many cells Z coefficients, one
assigns finitely many cells elements in G.
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Example 4.8.1. Let’s calculate the cellular homology with Z{2 coefficients for RP 2.
We take the CW decomposition with one cell in each dimension. So the Z{2 coefficient
chain complex looks like:

¨ ¨ ¨
B4
ÝÑ 0

B3
ÝÑ Z{2 B2

ÝÑ Z{2 B1
ÝÑ Z{2 Ñ 0.

Let the 0-cell be denoted by v, the 1-cell be denoted by e and the 2-cell be denoted by
f . Identify such a cell with the non-trivial element of the corresponding chain group
above. As for Z coefficient homology, we still get B1peq “ v´ v “ 0. But now in degree
two B2pfq “ 2e “ 0, since 2g “ 0 for g P Z{2. So we get the following homology groups:

HnpRP 2;Z{2q –

#

Z{2 for n “ 0, 1, 2;

0 otherwise.

Exercise 4.8.1. Calculate the homologies of K and T2 with coefficients in Z{2, Z{3
and R.

Example 4.8.2. Cellular homology with coefficients in Z{2 is quite easy to visualise:
an n-chain is determined by choosing a finite number of n-cells to assign the non-trivial
element of Z{2. I like to think of a light-bulb on each cell, which you can either turn
on or off. When the cells are attached nicely, the degree n boundary map works by
sequentially turning off the light of each n-cell e, flipping the switches of the pn ´ 1q-
cells in the boundary of e when those cells are covered an odd number of times by the
boundary of e.

For example, take a cellular decomposition of a compact, connected surface S. Each 1-
cell has precisely two 2-cells sitting either side of it. So there are precisely two 2-cycles:
the one where all the lights of 2-cells are off, and the one where all the lights are on. This
shows that H2pS;Z{2q – Z{2. More generally, for a compact and connected d-manifold
M (loosely, a space which ‘locally looks like Rd’), one may show that HdpM ;Z{2q – Z{2.
In contrast, for the usual Z coefficient homology, we have that HdpMq – Z when M is
orientable, and HdpMq – Z when M is not orientable. Remember from the d “ 2 case
that being ‘orientable’ corresponded to M having ‘two-sides’ and the orientable surfaces
are the surfaces of genus g (the ‘tori with g holes’). The two famous non-orientable
ones are RP 2 or K (in fact, you can get all of the non-orientable ones like you get all
of the orientable ones, starting instead with RP 2 and ‘attaching handles’).

Example 4.8.3. There is a computational advantage to computing homology with
coefficients in F “ Z{p, Q or R. In that case the cellular chain complex

¨ ¨ ¨
B4
ÝÑ Fk3 B3

ÝÑ Fk2 B2
ÝÑ Fk1 B1

ÝÑ Fk0 Ñ 0

is actually a chain complex of vector spaces over F considered as a field, with boundary
maps linear maps between vector spaces. The homology groups are Hn – Fzn´bn where
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zn is the dimension of the kernel of Bn : Fkn Ñ Fkn´1 and bn is dimension of the image
of Bn`1 (this is just the rank–nullity theorem).

For example, over R coefficients we cannot get torsion like we can for Z coefficients. This
can sometimes be a real loss of information: convince yourself that over R coefficients
the homology of RP 2 coincides with that of the one-point space, which is certainly not
the case over Z coefficients. For certain problems, though, the R coefficient homology
may be sufficient and far easier to compute.

4.8.3 Relation between degree one homology and fundamental
group

Let X be a topological space and x0 P X some fixed ‘base-point’. The fundamental
group π1pX, x0q is the group of homotopy classes of ‘based loops’, continuous maps
γ : S1 Ñ X sending 1 P S1 to x0. Given two such loops γ1, γ2, one can define their
product as γ2 ¨ γ1, given by ‘following γ1 then γ2’.

Let’s make this more precise: firstly we can think of a based loop as equivalently a
mapping γ : I Ñ X sending the endpoints 0 and 1 to x0. Then the product γ2 ¨ γ1 is
defined by:

γ2 ¨ γ1ptq–

#

γ1p2tq for 0 ď t ă 1{2;

γ2p2t´ 1q for 1{2 ď t ď 1.

In other words, you follow γ1 and then γ2 at twice the speed. We identify two such loops
if there is a continuous map F : I ˆ I Ñ X with F p0, sq “ F p1, sq “ x0, F pt, 0q “ γ1ptq
and F pt, 1q “ γ2ptq for all s, t P I. Write rγs for the class of loops equivalent to γ and
π1pX, x0q for the set of equivalence classes. One may show that rγ2s ¨ rγ1s – rγ2 ¨ γ1s

gives a well defined binary product and makes π1pX, x0q a group.

It is easily shown that π1pX, x0q only depends up to isomorphism on the path-component
of X from which x0 is chosen. So from now on we restrict to path-connected spaces
and drop the mention of x0.

Some examples indicate that there is a close relationship between π1pXq and H1pXq.
For example, H1pT2q – Z2, H1pRP 2q – Z{2, H1pS

1q – Z, H1pS
nq – 0 for n ą 1

are all isomorphic to the corresponding fundamental groups. Are they always the
same? They cannot always be: the fundamental group can be non-Abelian, for example
π1pS

1 _ S1q – Z ˚ Z, the free group (not free Abelian group!) on two generators; also,
π1pKq of the Klein bottle is non-Abelian. The homology of a space is always Abelian.
But given this restriction, they agree as much as they possible could do: H1pXq is the
Abelianisation of π1pXq, which we will see below.

Since ∆1 – I, we may think of a based loop γ as above as instead a singular 1-simplex
σγ. Since γp0q “ γp1q, it even defines a cycle. So define a map h1 : π1pXq Ñ H1pXq by
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hprγsq– rσγs. One may show that this is a well defined homomorphism of groups. We
have the following theorem of Hurewicz:

Theorem 4.8.1. Let X be a path-connected space. The homomorphism h1 : π1pXq Ñ
H1pXq described above is surjective and has kernel the commutator subgroup

rπ1pXq, π1pXqs ď π1pXq.

Hence h1 induces an isomorphism from the Abelianisation of π1pXq to H1pXq.

In the above, the commutator subgroup rG,Gs is the normal subgroup of a group
G generated by commutators rg, hs – ghg´1h´1 for g, h P G (so rG,Gs consists of
arbitrary products of commutators and their inverses in G). The quotient sending G to
G{rG,Gs is called the Abelianisation; this quotient group is Abelian and the subgroup
rG,Gs is the smallest normal subgroup by which one can quotient G to get an Abelian
group. Note that if G is Abelian then each rg, hs is the identity element so rG,Gs is
the trivial subgroup of just the identity. Taking the Abelianisation is essentially adding
the relations that ghg´1h´1 is the trivial element for any g, h P G, which is necessary
to be Abelian.

Exercise 4.8.2. Try to prove the above theorem. There are a few slightly tricky
technical details to sort in the proof; if you get too bogged down check the literature.

Example 4.8.4. The Abelianisation of Z ˚ Z adds the relation that aba´1b´1 is the
identity for a and b generators of the first and second copy of Z; one may show that this
results in the free Abelian group Z2. This agrees with the above Hurewicz theorem,
since π1pS

1 _ S1q – Z2, whereas H1pS
1 _ S1q – Z2 by Theorem 4.4.4.

There also exist higher Hurewicz homomorphisms hn : πnpXq Ñ HnpXq from the higher
homotopy groups of X (based on ‘higher dimensional loops’, maps Sn Ñ X, as alluded
to in the introduction). These higher homotopy groups, for n ą 1, are always Abelian.
Hurewicz showed that if πkpXq – 0 for k ă n then hn is an isomorphism and hn`1 is
surjective.

Example 4.8.5. Since π1pS
nq – 0 for n ą 1, it follows that πkpS

nq – HkpS
nq – 0 for

k ă n and πnpS
nq – HnpS

nq – Z.

The higher homotopy groups of a space are typically very difficult to compute, so
Hurewicz’s theorem can give interesting information in terms the easier to compute
homology groups in some special cases. For example, it can be used to compute a few
higher homotopy groups of the n-spheres.
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Appendix A

Proof of the Snake Lemma

There are two sorts of thing to check: (1) we must check that all of the maps in
the LES are well defined and (2) we must show that the LES is indeed exact in each
position. Being chain maps, we already know that the induced maps f˚ and g˚ are well
defined maps on homology. So let us firstly check that the connecting map B˚ is well
defined.

1(a) Well defined (α and β exist):

Let γ P Cn be an n-cycle; firstly we show that the elements α P An´1 and β P Bn as
described in the statement of the lemma exist. The element β P Bn is chosen so that
gnpβq “ γ. Such a β exists since gn is surjective, due to the exactness of

Bn
gn
ÝÑ Cn Ñ 0.

We must thus show that there exists α P An´1 for which fn´1pαq “ BBn pβq. Since
impfn´1q “ kerpgn´1q by exactness of

An´1
fn´1
ÝÝÝÑ Bn´1

gn´1
ÝÝÝÑ Cn´1,

we can find such an α precisely if BBn pβq P kerpgn´1q. Since pgiq is a chain map

gn´1pB
B
n pβqq “ B

C
n pgnpβqq “ B

C
n pγq “ 0,

as γ was taken to be a cycle. So the elements α and β exist, as required.

1(b) Well defined (α is a cycle):

The map B˚ is supposed to induce maps between homology groups, so we should check
that α is a cycle, i.e., that BAn´1pαq “ 0. Since fn´2 is injective by the exactness of

0 Ñ An´2
fn´2
ÝÝÝÑ Bn´2,
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this is equivalent to showing that fn´2pB
A
n´1pαqq “ 0. This is the case, since pfiq is a

chain map and so

fn´2pB
A
n´1pαqq “ B

B
n´1pfn´1pαqq “ B

B
n´1pB

B
n pβqq “ 0,

as B ˝ B “ 0 in a chain complex.

1(c) Well defined (homology class of α does not depend on choices made):

For B˚ to be well defined, there is a little more to do: we need to check that taking a
different representative of γ1 of rγs P HnpCq or different choices of α P An´1 and β P Bn

(α1 and β1, say) does not make a difference, so that rαs “ rα1s P Hn´1pAq.

That rγs “ rγ1s in HnpCq is equivalent to saying that there exists some τ P Cn`1 with
γ ´ γ1 “ BCn`1pτq (i.e., γ and γ1 differ by a boundary). It follows that

gnpβ ´ β
1
q “ gnpβq ´ gnpβ

1
q “ γ ´ γ1 “ BCn`1pτq. (A.0.1)

This says that β ´ β1 is in the kernel of gn, up to a boundary in C˚. We’d rather have,
up to a boundary in B˚, that β ´ β1 is an element of the kernel of gn, so as to utilise
exactness; this prompts us to find some ζ P Bn`1 for which

gnpB
B
n`1pζqq “ B

C
n`1pτq.

We can find such a ζ, since gn ˝ B
B
n`1 “ B

C
n`1 ˝ gn`1 as pgiq is a chain map, so we pick

ζ P Bn`1 with gn`1pζq “ τ (which we can do, since gn`1 is surjective by exactness). By
Equation A.0.1,

gnpβ ´ β
1
´ B

B
n`1pζqq “ 0.

Exactness implies that impfnq “ kerpgnq, so there must exist some ν P An with

fnpνq “ β ´ β1 ´ BBn`1pζq. (A.0.2)

Remember that we wish to show that α ´ α1 is a boundary, and it seems that BAn pνq
would be a good candidate. From Equation A.0.2

fn´1pB
A
n pνqq “ B

B
n pfnpνqq “ B

B
n pβ´β

1
´B

B
n`1pζqq “ B

B
n pβq´B

B
n pβ

1
q “ fn´1pαq´fn´1pα

1
q.

So we have that fn´1pα´α
1´BAn pνqq “ 0. By exactness fn´1 is injective and we conclude

that α ´ α1 ´ BAn pνq “ 0, so α ´ α1 is a boundary, as desired.

1(d) Well defined (connecting map is a homomorphism):

This one is easy. Take γ, γ1 P Cn. We must check that B˚prγs`rγ
1sq “ B˚prγsq`B˚prγ

1sq

in An´1. So let α, α1 P An´1 and β, β1 P Bn be such that fn´1pαq “ BBn pβq and
gnpβq “ γ, and similarly for the primed versions, as in the definition of the connecting
map. Then

fn´1pα ` α
1
q “ fn´1pαq ` fn´1pα

1
q “ B

B
n pβq ` B

B
n pβ

1
q “ B

B
n pβ ` β

1
q
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and
gnpβ ` β

1
q “ gnpβq ` gnpβ

1
q “ γ ` γ1,

as everything involved is a homomorphism, so we may take B˚prγs`rγ
1sq “ B˚prγ`γ

1sq–

α ` α1 “ B˚prγsq ` B˚prγ
1sq.

2(a) Exactness (impf˚q “ kerpg˚q):

There are three types of location in the LES for which we must check exactness. We
shall cover two of them and leave the third as an exercise. Firstly we wish to show that
the diagram

HnpAq
f˚
ÝÑ HnpBq

g˚
ÝÑ HnpCq

is exact. So suppose that σ P Bn is a cycle. To say that rσs P kerpg˚q is to say that
gnpσq is a boundary i.e., there exists some τ P Cn`1 with BCn`1pτq “ gnpσq. Since gn`1

is surjective there exists ρ P Bn`1 with gn`1pρq “ τ . It follows that

gnpσ ´ B
B
n`1pρqq “ gnpσq ´ gnpB

B
n`1pρqq “ B

C
n`1pτq ´ B

C
n`1pgn`1pρqq “ 0,

in other words σ, up to a boundary in B˚, is in kerpgnq. By exactness, there exists
ν P An with fnpνq “ σ ´ BBn`1pρq, which means that f˚prνsq – rfnpνqs “ rσs, so
rσs P impf˚q.

For the other direction, i.e., to show that impf˚q Ď kerpg˚q, it is equivalent to show
that g˚ ˝ f˚ “ 0, the zero map from H˚pAq to H˚pCq. However, this is pretty obvious
by functorality: g˚ ˝ f˚ “ ppgnq ˝ pfnqq˚ “ p0q˚, where the 0 here represents the trivial
map from A˚ to C˚ sending every element to zero (which we have from exactness of the
chain maps). Clearly the induced map of the zero chain map is the zero map between
the corresponding homology groups.

2(b) Exactness (impB˚q “ kerpf˚q):

Next we show that
HnpCq

B˚
ÝÑ Hn´1pAq

f˚
ÝÑ Hn´1pBq

is exact. So let α P An´1 be an pn´ 1q-cycle. If rαs P kerpf˚q that means that fnpαq is
a boundary, i.e., there exists some β P Bn with fn´1pσq “ B

B
n pβq. Setting γ – BBn pβq,

we see that rαs “ B˚prγsq, by the definition of the connecting map, and so rαs P impB˚q,
as desired.

Conversely, suppose that rαs P impB˚q. Hence, there exists some α1 P An´1, β P Bn

and γ P Cn so that: (1) rαs “ rα1s, (2) fn´1pα
1q “ BBn pβq and (3) gnpβq “ γ. We

wish to show that the homology class of α is in kerpf˚q, so we may as well just show
that fn´1pα

1q represents a trivial element in Hn´1pBq, which is not different problem
as α1 represents the same homology class by (1). But it follows directly from (2) that
fn´1pα

1q is a boundary, so f˚prα
1sq “ 0 and hence rαs P kerpf˚q.

2(a) Exactness (impg˚q “ kerpB˚q):
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All that’s left is to show that

HnpBq
g˚
ÝÑ HnpCq

B˚
ÝÑ Hn´1pAq

is exact. If you heeded our advice above you will have already been making your own
way through the proof. If not, at least try to wrap up this final small part as an
Exercise.

A.1 Naturality

There is a natural notion of a morphism between two short exact sequences of chain
complexes, a commutative diagram like the following:

0 A˚ B˚ C˚ 0

0 A1˚ B1˚ C 1˚ 0

f

α

g

β γ

f 1 g1

It turns out that the Snake Lemma is functorial: when applied to such a diagram,
you not only get two long exact sequences from the Snake Lemma, you also get a map
between those long exact sequences:

¨ ¨ ¨ Hk`1pBq HkpCq HkpAq HkpBq ¨ ¨ ¨

¨ ¨ ¨ Hk`1pB
1q Hk`1pC

1q HkpA
1q HkpB

1q ¨ ¨ ¨

f˚ g˚

β˚

B˚

γ˚

f˚

α˚

g˚

β˚

f 1˚ g1˚ B˚ f 1˚ g1˚

(A.1.1)
This property is more usually referred to as ‘naturality’, which can be given a rigorous
category-theoretic meaning.

Exercise A.1.1. Prove the assertion, namely on the commutativity of the diagram
A.1.1. You will need to look back at the definition of the connecting map B˚ defining
the LES from the Snake Lemma 2.3.1.
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Appendix B

Rank and short exact sequences

Here we shall briefly explain why the rank of an Abelian group as given in Section 2.4.1
is well defined and behaves additively with respect to short exact sequences.

Lemma B.0.1. The rank of an Abelian group is well defined.

Proof. One can show that there is at least one maximal linearly independent set using
Zorn’s Lemma. Given two, we just need to show then that they are the same size. The
proof is just like that for proving that the dimension of a vector space is well defined.
Take two maximal linearly independent sets S1, S2 Ď A and suppose, without loss of
generality, that |S1| ă |S2|.

For any a P S1 there exists some non-zero ka P Z so that

kaa “
ÿ

Sa

nbb (B.0.1)

for nb P Z and b P Sa for some finite subset Sa Ď S2 (otherwise we can add a to S2

which is thus not minimal).

Suppose first that S2 is infinite. As the sums as in Equation B.0.1 are finite sums and
|S1| ă |S2|, some b P S2 does not appear in Sa for any a P A. As above we can still write
`b as a finite Z-linear combination of terms in S1 for some non-zero ` P Z, and each of
these terms have multiples which can be expressed as finite sums in S2 not involving
b. This means that we can express a multiple of b as a finite Z-linear combination of
others in S2, which is thus not linearly independent, a contradiction.

If S2 is finite then so is S1. Write S1 “ ta1, . . . , amu and S2 “ tb1, . . . , bnu with m ă n.
We may express a non-zero multiple of a1 as a Z-linear combination of the bis and show
that ta1, b1, . . . , b̂j . . . , bnu is linearly independent and maximal for some omitted b̂j.
One can repeat this process, replacing bi terms with ai terms in S2 (c.f., the proof for
vector spaces). As a result one constructs a linearly independent set which contains S1

and with strictly more elements, contradicting that S1 is maximal.
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Proof of Lemma 2.4.1. Let 0 Ñ A
f
ÝÑ B

g
ÝÑ C Ñ 0 be a short exact sequence. Take a

maximal linearly independent set SA of elements of A, and SC of C. For each ci P SC
pick c1i P B with gpc1iq “ ci. Then we claim that the following set is linearly independent
and maximal in B:

SB “ tfpaiq | ai P SAu Y tc
1
i | ci P SCu.

To see that SB is linearly independent, suppose that
ř

SA
mifpaiq `

ř

SC
nic

1
i “ 0.

Since g ˝ f “ 0, applying g to the sum we have that
ř

SC
nici “ 0, which by linear

independence of SC implies that each ni “ 0, so
ř

SA
mifpaiq “ 0. But f is injective,

so
ř

SA
miai “ 0. By linear independence of SA we have that each mi “ 0 too and SC

is linearly independent.

To see that SB is maximal, suppose that b P B. Consider gpbq P C. By maximality of
SC we have that gp`bq “ `gpbq “

ř

nici for some non-zero ` P Z. Hence b1 “
ř

SC
nic

1
i

is such that gp`bq “ gp`b1q, so `pb ´ b1q P kerpgq “ impfq by exactness. Let a P A be
such that fpaq “ `pb ´ b1q. By maximality of SA there is some non-zero k P Z with
ka “

ř

SC
miai. Hence k`pb ´ b1q “ kpfpaqq “ fpkpaqq “

ř

SC
mifpaiq. It follows

that pk`qb is a linear combination of terms from SB, which is thus maximal. Since
|SB| “ |SA Y SC | “ |SA| ` |SC |, we have shown that rkpAq ` rkpCq “ rkpBq.
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Appendix C

Geometric realisation

Let α and β be finite subsets of Rn in general position and let f : α Ñ β. We define
the corresponding affine extension Lf : ∆α Ñ ∆β by the formula

Lf p
ÿ

vPα

λiviq–
ÿ

vPα

λifpvq.

Remark C.0.1. This is functorial in the following sense:

• for idα the identity map on α we have that Lidα “ id∆α , the identity map on ∆α;

• for f : αÑ β and g : β Ñ γ, we have that Lg˝f “ Lg ˝ Lf .

For α Ď β we have that ∆α Ď ∆β (∆α is a face of ∆β), and the inclusion map ∆α ãÑ ∆β

is given by Lι, where ι : α ãÑ β is the inclusion of α into β.

One use of these affine maps is that they allow us to canonically identify simplices. In
what follows, as usual, the underlying set V of a simplicial complex K is equipped with
a total order, and simplices of K are always written with elements in order.

Suppose that f : ∆α Ñ X is a function, for an n-simplex ∆α whose vertex set α is
totally ordered. Let J Ď α. Generalising the notation of Section 3.3.2, let

fænJ : ∆n´|J |
Ñ X

be the function given by restricting ∆α to the face spanned by vertices α ´ J but first
implicitly identifying this simplex with the standard pn´ |J |q-simplex using the affine
extension Lpfq of the unique order-preserving bijection f mapping te0, . . . , en´|J |u to
α´J . In other words ænJ “ Lpιq˝Lpfq where ι is the injection ι : α´J ãÑ α. Again, we
will occasionally drop the superscript of ænJ . Note that it is only well defined in context
(we need to know the domain of f).
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Lemma C.0.1. Let J1 Ď J2 Ď α. We have the equality

fæJ1 “ pfæJ2qæJ

where J Ď te0, . . . , en´|J2|u lists the indices of elements of J2 that are not in J1.

Proof. We are really just showing here that Lpι1q˝Lpf1q “ pLpι2q˝Lpf2qq˝pLpιq˝Lpfqq
associated to various maps between finite sets. By functorality one just checks that these
compositions of functions agree. The one on the left of this equation just injects a finite
set of pn ´ |J1|q elements into that of n elements by skipping the index J1 elements.
The one on the right first skips over an element of index j P J if the index j element
of J2 is not in J1, and then skips over the index J2 elements. By construction these
compositions agree.

Note that for i ă j this recovers the simple equation æjæi “ æiæj´1.

C.1 Geometric realisation

The 0-skeleton |K|0 is taken simply as the discrete space with points in bijection with
V (really, in bijection with the singleton subsets of V ). We have maps σtvu : ∆0 Ñ

|K|0, where ∆0 is the standard 0-simplex (i.e., a point) which record which points are
associated to which elements tvu P K.

So suppose that we have constructed the k-skeleton |K|k, which we shall denote through-
out by X and, moreover, for each n-simplex α P K for n ď k we have an associated
continuous map (even, it turns out, a homeomorphism onto its image) σα : ∆n Ñ X,
where ∆n is the standard n-simplex. For each β “ tv0, . . . , vk`1u P K we wish to attach
a pk`1q-cell to the k-skeleton. The simplex ∆k`1 is homeomorphic to the disc Dk`1 and
its boundary B∆k`1 is the union of faces of ∆k`1. To define the attaching map

Bβ : B∆k`1
Ñ X

it is enough to know how to map each of the faces of ∆k`1 into the k-skeleton.

There is a canonical way to do this: a face of B∆k`1 is given by deleting some non-empty
proper subset J of indices from te0, . . . , ek`1u and taking the convex hull. We define Bβ
so that

Bβæ
k`1
J “ σα,

where α P K is the subset of β given by deleting index J elements (so the re-parametrised
restriction to the face spanned by vertices of β not in J).

It needs to be checked that Bβ has the same definition when defined as above on the
overlap of two different faces of B∆k`1. Since any two such faces, ∆α1 and ∆α2 , cor-
responding to α1, α2 Ă β P K, intersect in another (i.e., ∆α1Xα2) it is enough to check
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this for ∆α1 Ă ∆α2 , i.e., with α1 Ă α2 Ă β. Applying the definition straight to
∆α1 , we have that Bα1æJ1 “ σα1 , where α1 is given by removing the index J1 ele-
ments of β. Similarly, α2 is given by deleting elements of β with indices in some J2,
and α1 is given by deleting elements of α2 with indices in some J . So the restric-
tion of BβæJ2 to ∆α1 (with a canonical identification with a standard simplex) is really
pBβæJ2qæJ “ pσα2qæJ “ pBα2qæJ “ σα1 . The final two equalities come from the defini-
tion of Bα2 , which we assume to already be well defined by induction further down the
skeleta.

So Bβ is well defined. Repeating for each β P K of size pk ` 2q, this defines the
attaching maps of the pk ` 1q-cells, and so this defines a CW complex as described in
Section 1.2.1.

C.2 Geometric geometric realisation

Usually the geometric realisation can be done in a more geometric way i.e., it can all
be done inside Euclidean space using actual simplices. This is the case, in particular,
if the set of vertices is finite (or even countable, although then one uses R8). We’ll
quickly cover how that goes here.

Let K be a simplicial complex over the set V (so K has vertices tvu for v P V ). Suppose,
moreover, that we have some Euclidean space RN and for each v P V some chosen point
xv P RN . For α P K we let ∆α be the convex hull of the vertices xv, for v P α, and let
eα be the corresponding open cell, i.e.,

eα – t
ÿ

vPα

λvxv | λv P p0, 1q,
ÿ

v

λv “ 1u

for α consisting of more than 1 point (and we set eα “ txvu if |α| “ 1). Suppose that
the vertices xv are in sufficiently general position with respect to K, in the following
sense: for any α P K we have that the vertices defining ∆α are in general position, and
that for α ‰ β P K we have that eα X eβ “ H. Then we may define the geometric
realisation of K as the subspace

|K|–
ď

αPK
∆α Ď RN .

In other words, we have defined the geometric realisation just as the union of the
simplicies ∆α, as we usually imagine it when drawing pictures. Of course, the k-skeleton
is given by the union of k-simplicies ∆α (i.e., with |α| “ k ` 1).

Note that if V is finite then we can always find an embedding into a Euclidean space
like this. We simply choose each xv as a different standard basis vector in R|V | (c.f.,
the standard n-simplex). If you’ve met R8 before, one can also consider the analogue
of the above process through embeddings into it. Some authors choose to define the
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geometric realisation in this way, at the small cost of disallowing simplicial complexes
with uncountably many vertices. One advantage, beyond being a little more visual,
is that this shows that simplicial complexes with countably many cells have geometric
realisations which are metrisable.
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