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1. Introduction

1.1. What is a characteristic class? A characteristic class is a way of assigning cohomology
classes to vector bundles in a natural way. They can detect whether a locally trivial bundle is
globally twisted.

1.2. What use are they?

1.2.1. Distinguishing bundles. Just as cohomology groups can tell apart spaces, characteristic
classes can help to distinguish vector bundles. In particular, sometimes (but not always)
a characteristic class can detect that a vector bundle is non-trivial (‘essentially twisted’).
Triviality of a vector bundle is not always obvious; for example, it was a significant achievement
in algebraic topology1 to prove that the only parallelisable spheres (those with trivial tangent
bundles) are S0, S1, S3 and S7. This implies that the only finite-dimensional division algebras
have dimensions 1, 2, 4 and 8. These problems were actually solved using higher cohomology
operations rather than characteristic classes directly, but characteristic classes form an integral
part of the structure.

1.2.2. Link between cohomology and K-theory: the Chern character. K-theory is a natural
invariant for C∗-algebras, so is probably of more interest to many of us in the analysis group
than singular cohomology of spaces. However, for a given space its cohomology is often easier
to compute than its K-theory (for example, we can compute it given a nice cell decompo-
sition) and potentially provides different geometric information. The two are linked via the
Chern character. We’ll see how one defines the Chern character via the Chern characteristic
classes. The Chern character plays an important role in topological index theorems for elliptic
operators.

1.2.3. Other miscellaneous uses. Apparently characteristic classes appear in mathematical
physics and other areas. From wikipedia: “[The Chern classes] have since found applications
in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–
Witten invariants, topological quantum field theory, the Chern theorem etc.”

Characteristic classes solve the cobordism problem. Two closed, smooth n-manifolds M and
N are unoriented cobordant (that is, there is an (n+ 1)-manifold W with boundary M tN) if
and only if the Stiefel–Whitney numbers of the manifolds agree (these are integers constructed
from the Stiefel–Whitney classes of the tangent bundles of the two manifolds). Manifolds
are oriented cobordant if and only if both their Stiefel–Whitney and Pontryagin numbers

1Actually a lot more can be said. Adams found a precise formula for the maximum number of linearly
independent vector fields on the spheres.
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2 INTRODUCTION TO K-THEORY

agree. There is sometimes hope of computing these classes for manifolds; for example, Chern–
Weil Theory sets out an approach via connections and curvature forms on the manifolds
involved.

Bounds on dimensions in which manifolds can be immersed can sometimes be given using
characteristic classes. For example, if an n-manifold can be immersed into Rn+k, then the
inverse of the total Stiefel–Whitney class of the tangent bundle is zero in degrees above k.

One can prove, for example, that 2`-projective space (` ≥ 1) can be immersed into R2`+k if
and only if k ≥ 2` − 1.

2. Vector bundles

A vector bundle over a space B (the ‘base space’) is given by ‘continuously attaching vector
spaces to each point of B’.

Definition 2.1. A (real) vector bundle ν consists of:

• a space B = B(ν) called the base space;

• a space E = E(ν) called the total space;

• a map π = π(ν) : E → B called the projection;

• a finite-dimensional R-vector space structure on each fibre π−1(b).

We require this data to be ‘locally trivial’, which means the following:

For each b ∈ B there exists a neighbourhood U ⊆ B of b, an integer r ≥ 0 and a commutative
diagram

(2.1)

U × Rr π−1(U)

B

h

π1 π

where h is a homeomorphism, π1(u, x) := u and h restricts to isomorphisms on the fibres.
(Note that the above diagram commuting is equivalent to specifying that h maps fibres to
fibres.)

The dimension r of the fibre must be locally constant; usually this number is globally constant,
in which case we call r the rank of the bundle.

We have the analogous notion of a complex vector bundle, where we instead attach C-vector
spaces to each point of B. Every C-vector bundle of rank r defines an R-vector bundle of
rank 2r, as one would imagine. Conversely, given an even dimensional R-vector bundle ν,
one can define a corresponding C-vector bundle if ν is equipped with a ‘complex structure’, a
self-map J of the total space taking fibres linearly to themselves and on such a fibre satisfying
J(J(v)) = −v.

Definition 2.2. Two vector bundles ν and ξ over B are called isomorphic if there exists a
homeomorphism h : E(ν)→ E(ξ) which maps fibres isomorphically to fibres.

Let us write VectRr (X) for the set of isomorphism classes of real rank r bundles over X (and
similarly for complex bundles), just Vectr(X) when the field is understood and dropping the
r if we include bundles of all ranks.
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One can also talk of maps between vector bundles over different base spaces:

Definition 2.3. A bundle map between bundles ν and ξ is a commutative diagram of maps

E(ν) E(ξ)

B(ν) B(ξ)

π(ν)

g

π(ξ)

f

for which g is linear on each fibre.

Given a map f : B1 → B2 and a vector bundle ν over B2, with projection map π : E → B2,
one can pull it back to a bundle f∗ν over B1 (and functorially, so (f ◦ g)∗ν = g∗(f∗ν)). The
pullback bundle f∗ν has total space

E(f∗ν) := {(b, e) ∈ B1 × E | f(b) = π(e)}

with the subspace topology. The projection map is the projection to the first coordinate. This
defines a bundle map from f∗ν to ν. Conversely, a bundle map taking fibres isomorphically
to fibres is essentially a pullback:

Lemma 2.4. Given a bundle map between ξ and ν mapping fibres isomorphically to fibres,
with induced map f between the base spaces, the bundle ξ is isomorphic to the pullback f∗ν.

Let’s now look at the basic examples of vector bundles:

Example 2.5. Given any space B we have the trivial bundle with total space B × Rn and
projection map given by the projection to the first coordinate. A bundle is called trivial if
it is isomorphic to the trivial bundle. Equation 2.1 specifies that any bundle is trivial when
restricted to sufficiently small neighbourhoods; a trivial bundle is one that is trivial globally
rather than just locally.

A section of a bundle ν with projection π : E → B is a map s : B → E for which π ◦ s = idB
(that is, s maps a point of b to a point in its fibre). A rank r bundle is trivial if and only if it
has r sections which are linearly independent on each fibre.

Example 2.6. Given a smooth n-manifold M , we have its associated rank n ‘tangent bundle’
τM . The projection map of τM sends a tangent vector to the point of M at which it is based.

A section of the tangent bundle is called a vector field; it is a continuous choice of tangent
vector at each point of the manifold. The manifold is called ‘parallelisable’ if τM is a trivial
bundle. For example, S1 is parallelisable (there is an obvious non-zero vector field) whereas
S2 isn’t since it doesn’t even have a single non-zero vector field (which is also the case for all
even-dimensional spheres, this is the ‘Hairy Ball Theorem’).

A smooth map f : M → N induces a bundle map between their tangent bundles (this is
functorial, generalising the ‘chain rule’ (f ◦ g)′ = (f ′ ◦ g) · g′ from Real Analysis). The tangent
vectors at m ∈M are mapped to tangent vectors at f(m) by the Jacobian.

Example 2.7. One may visualise the rank 1 trivial bundle over S1 as a cylinder. Adding a
twist gives the ‘Möbius bundle’, the simplest non-trivial bundle. This is generalised by the
‘tautological line bundle over projective n-space’.
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We’ve seen that given a fibre bundle one may construct a new one by pulling it back with
a continuous map. There are lots of other more algebraic constructions for them too; basic
operations on vector spaces generally have counterparts for vector bundles.

For example, one may take the Whitney sum ν ⊕ ξ of two vector bundles over a common base
space. One should think of each fibre of this new bundle as the direct sum of the fibres of the
originals. Similarly one has ν ⊗ ξ, hom(ν, ξ) (and so dual vector bundles, ν̂ = hom(ν, T ) with
T the rank 1 trivial bundle over X),...

2.1. Classifying spaces. We assume throughout that all spaces are Hausdorff and paracom-
pact (this isn’t asking much; all compact Hausdorff spaces and all CW complexes satisfy this,
for example).

We have the following beautiful result:

Theorem 2.8. For each r ∈ N there is a rank r universal bundle γr for which any rank r
bundle is a pullback of γr.

Moreover, writing the base space of γr as B(r), two maps f , g : X → B(r) give isomorphic
pullbacks f∗γn ∼= g∗γn if and only if f and g are homotopic. So taking pullbacks of γr gives a
natural bijection

[X,B(r)]
∼=−−−−−→

f 7→f∗γr
Vectr(X),

where [X,B(r)] denotes the set of homotopy classes of maps from X to B(r).

Let’s just say a few of words on this space B(n). It can be constructed as the Grassmannian of
n-planes in R∞ (or C∞, as appropriate), or as the inductive limit of compact, finite-dimensional
Grassmannians Gr(n,Rk) of n-planes in Rk (Ck, resp.). In the complex case we call this space2

BU(n). It is the classifying space of C-vector bundles.

For n = 1 one has BU(1) ∼= CP∞, the infinite-dimensional complex projective space of rank
1 subspaces of C∞. The universal rank 1 bundle over CP∞ consists of choices of a point of
CP∞ (a complex line in C∞) and a point of the corresponding complex line. This is sometimes
called the rank 1 (complex) tautological bundle.

The above shows that the study of vector bundles can be recast as the homotopy theory of
the base spaces in question and the classifying spaces of bundles.

Here’s a fun application:

Example 2.9. What C-vector bundles do spheres support? Recall that the nth homotopy
group πn(X) of a (path-connected) space X has as elements the homotopy classes of maps
from Sn to X, so in fact we have bijections

VectCr (Sn) ∼= [Sn, BU(r)] ∼= πn(BU(r)) ∼= πn−1(U(r))

(the final bijection is a standard fact about classifying spaces of topological groups).

So to work out what C-vector bundles spheres support is to work out the homotopy groups
of the unitary groups. For example, since the unitary groups are connected, S1 only supports

2...since it is the classifying space of U(n), for those familiar with classifying spaces of groups. This space
classifies principal U(n) bundles. Over paracompact base spaces complex bundles can be give a ‘hermitian
metric’ which then canonically defines a principal U(n) bundle; conversely a principal U(n) bundles defines a
rank n vector bundle. Of course we have similar things for real bundles, where the classifying space is BO(n).
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trivial C-bundles; S2 has a Z-worth of rank r-vector bundles for each r (generated by a single
line bundle, in some sense). More details and examples in the appendix.

3. Cohomology

We just recall the basics, for notation. For each n ∈ N0 and topological space X one has
the Abelian group Hn(X), called the degree n (singular) cohomology group of X. For
the cohomology groups it is advantageous to view them all together, since there is also a ring
structure: we write

H∗(X) =
∞⊕
n=0

Hn(X),

which we view, firstly, as a graded Abelian group. There is also a product operation

^ : H∗(X)×H∗(X)→ H∗(X),

where we write a ^ b for the so-called cup product of cohomology classes a and b. Everything
is associative, distributive and there’s a unit 1 ∈ H0(X).

If a cohomology class x is purely graded in some Hn(X), then we say that x has degree n
and write |x| = n. For purely graded a, b ∈ H∗(X) we have that |a ^ b| = |a| + |b| (the
product respects the grading) and moreover the cohomology ring is graded commutative,

which means that a ^ b = (−1)|a|·|b|(b ^ a).

Cohomology is a contravariant functor : not only given a space X do we get a ring H∗(X),
whenever we’re given a continuous map f we get a ring homomorphism f∗ : H∗(Y )→ H∗(X)
(the direction of the arrow is reversed because this is a contravariant functor). Being a
functor means that it respects the structure (identities and composition) of the categories
we’re mapping to and from: we have that (idX)∗ = idH∗(X) and (f ◦ g)∗ = g∗ ◦ f∗. In fact, it
defines a functor from the homotopy category: if f and g are homotopic then f∗ = g∗.

Loosely, the cohomology group Hn(X) can detect“n-dimensional holes” in your space X:

Example 3.1. The cohomology ring of the 2-sphere S2 is:

H∗(S2) ∼= Z[x]/(x2)

where |x| = 2. That is, a generic element is k1 + k2x where each ki ∈ Z, H0(S2) ∼= Z,
H1(S2) ∼= 0, H2(S2) ∼= Z (generated by x) and Hn(S2) ∼= 0 for n > 2. Triviality of H1(S2) is
related to the fact that any 1-dimensional loop on S2 can be continuously shrunk to a point.

Example 3.2. The cohomology ring of the 2-torus T2 := S1 × S1 is

H∗(T2) ∼= Z[x, y]/(x2, y2).

So a typical element is of the form k + (mx + ny) + `(x ^ y) where k, m, n and ` ∈ Z;
we have H0(T2) ∼= Z, H1(T2) ∼= Z2 (generated by x and y), H2(T2) ∼= Z (generated by
x ^ y = −(y ^ x)) and Hn(T2) ∼= 0 otherwise. That H1(T2) ∼= Z2 corresponds to the fact
that there are two distinct and ‘primitive’ loops on the torus, wrapping around the meridian
and the longitude.

Example 3.3. The one-point join of spheres S2 ∨ S4 and the space CP 2 have the same
cohomology groups in all degrees (isomorphic to Z in degrees 0, 2 and 4, and are trivial
otherwise). However, they are not homotopy equivalent. Although this isn’t detected by
H∗(−) as a graded group, it is detected by its ring structure: the element α ^ α, where α is
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a generator in degree 2, is a generator in degree 4 in the cohomology ring of CP 2 whereas it
is trivial for S2 ∨ S4.

4. The Chern Classes

A characteristic class sends a vector bundle over X to an element of3 H∗(X). We’ll look at
the Chern classes. These are characteristic classes for complex vector bundles, so for the rest
of this section our vector bundles will be over C.

It turns out that the Chern classes are completely characterised by a useful set of axioms:

Definition 4.1. The (total) Chern class of a complex vector bundle ν is an element of
H∗(X), denoted by c(ν). The Chern classes are concentrated in even degrees H2n(X) of the
cohomology and we denote the degree 2n part of c(ν) by cn(ν).

The Chern classes are uniquely determined by the following axioms:

(1) c0(ν) = 1 and ck(ν) = 0 for k > r for all rank r vector bundles;

(2) for a continuous map f we have4 that c(f∗ν) = f∗c(ν);

(3) for two vector bundles ν and ξ over X we have c(ν ⊕ ξ) = c(ν) ^ c(ξ);

(4) for the rank 1 tautological bundle γ1 we have that c1(γ1) is the canonical degree 2
generator of H∗(CP∞).

The second axiom may be restated as saying that the Chern classes are natural : c defines
a natural transformation from the functor VectC(−) to H∗(−) (both regarded as just sets).
The third axiom is sometimes called the Whitney sum formula; degree-wise, it can be rewrit-
ten:

cn(ν ⊕ ξ) =
∑
i+j=n

ci(ν) ^ cj(ξ).

The final axiom may be considered as a normalisation axiom. As we’ll mention later, H∗(CP∞) ∼=
Z[x] where |x| = 2.

One can derive some simple properties from the above axioms. For example, the Chern classes
of a trivial bundle are trivial:

Proposition 4.2. If ν is a trivial bundle then c(ν) = 1.

Proof. One may easily show that a trivial bundle is isomorphic to the pullback p∗ξ of the
trivial ξ bundle over the one-point space ∗, where p : X → ∗. Since H∗(∗) = Z has no higher
cohomology, by Axiom 1 above we have that c(ξ) = 1, and by naturality c(ν) = c(p∗ξ) =
p∗c(ξ) = p∗(1) = 1. �

We see that non-triviality of Chern classes gives an obstruction to triviality of the vector
bundle.

3Or other cohomology theories. For example, the Steifel–Whitney classes belong to H∗(X;Z/2), cohomology
with Z/2 coefficients.

4As previously mentioned, there is an abuse of notation here: for c(f∗ν), the f∗ denotes the pullback
operation on vector bundles. For f∗c(ν) the f∗ is the induced map on cohomology.
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Another simple consequence of the axioms is that the Chern classes are stable: c(ν) = c(ν⊕ ξ)
for any trivial bundle ξ. Indeed, by the Whitney sum formula and the above, c(ν) = c(ν) ^
1 = c(ν) ^ c(ξ) = c(ν ⊕ ξ).

5. Cohomology of the classifying spaces and universal Chern classes

One elegant way of constructing the Chern classes is to just define them for the universal
bundles. The rest of the Chern classes can then be defined as the pullbacks of the universal
ones, from which one gets naturality for free. The other axioms come from nice algebraic
structure on the universal Chern classes.

5.1. Dimension 1. In dimension 1 we have that BU(1) ∼= CP∞, infinite complex projective
space. Its cohomology ring is H∗(CP∞) ∼= Z[c1], where |c1| = 2. It’s not hard to compute the
cohomology groups here (there’s a cell decomposition with one cell in each even dimension).
To get the ring structure one could use the Serre spectral sequence of the fibre bundle S1 ↪→
S∞ → CP∞.

5.2. Higher dimensions. It turns out that H∗(BU(r)) ∼= Z[c1, c2, . . . , cr] where |ci| = 2i.
These generators ci will later be called universal Chern classes.

For m, n ∈ N we have the diagonal embeddings U(m)× U(n) ↪→ U(m+ n), and these induce
maps w : BU(m) × BU(n) → BU(m + n) between the classifying spaces. In particular, we
have the map induced from the embedding of the maximal torus:

d : BU(1)r → BU(r).

One may show that the induced map on cohomology

d∗ : H∗(BU(r))→ H∗(BU(1)r) ∼= Z[t1, t2, . . . , tr]

is injective (here each |ti| = 2). Moreover, the symmetric group acts on U(1)r by permuting
the coordinates, giving a symmetric action on H∗(BU(1)r) which permutes the generators ti.
So the image of d∗ is contained in the symmetric polynomials of Z[t1, . . . , tr]. One may show
that in fact d∗ is surjective onto them:

Theorem 5.1. The map d∗ : H∗(BU(r)) → H∗(BU(1)r) ∼= Z[t1, . . . , tr] is an isomorphism
onto its image, the sub-ring of symmetric polynomials in the ti.

So we have the following motto:

Elements of the cohomology ring H∗(BU(r)) can be identified with the symmetric polynomials
of H∗(BU(1)r) ∼= Z[t1, . . . , tr].

Thinking ahead a little, if one has a sum of line bundles ν = ν1⊕ . . .⊕ νr, then the axioms for
the Chern classes demand that

c(ν) = (1 + x1)(1 + x2) · · · (1 + xr),

where each xi is a first Chern class c1(νi). On the other hand, the kth Chern class of ν should
be the degree k part of the polynomial above, which is the elementary symmetric polynomial
in the xi (the polynomial of the sum of each k-fold product of distinct xi). Each generator
ti of H∗(BU(1)r) corresponds to a canonical generator of H∗(BU(1)), which will serve as the
first universal Chern class. Therefore, we have a clear choice for the generators of H∗(BU(r)),
resulting in a more specific motto to the one above:
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The generator ck of H∗(BU(r)) ∼= Z[c1, . . . , cr] should to correspond to the kth elementary
symmetric polynomial of H∗(BU(1)r) ∼= Z[t1, . . . , tr].

These elementary symmetric polynomials indeed generate the ring of all symmetric polyno-
mials. The ti are sometimes called Chern roots. They are often used in an unexplained
formal sense, by identifying an expression of Chern roots ti with an expression of the uni-
versal Chern classes ci, even though they live in different cohomology rings (there is no
element of H∗(BU(3)) corresponding to t1 − t22 + t1t3, for example, this isn’t a symmet-
ric polynomial). But any polynomial in H∗(BU(n)) = Z[c1, . . . , cn] gives a polynomial in
H∗(BU(1)n) = Z[t1, . . . , tn] (by replacing each ci with the kth symmetric polynomial in the
ti) and conversely any symmetric polynomial in the ti has a unique expression in terms of the
elementary symmetric polynomials, which we identify with the ci.

The important relations between the universal Chern classes can be summarised as below.
These properties follow reasonably quickly from Theorem 5.1 and our choices for the ci in
terms of the Chern roots. So most of the work here is in proving Theorem 5.1.

Definition 5.2. For r ≥ 1 we have universal Chern classes

c
(r)
k = ck ∈ H2k(BU(r)),

and we define the total universal Chern class to be

c = c(r) = 1 + c1 + c2 + . . .+ cr ∈ H∗(BU(r)).

These classes are characterised by the following axioms:

(1) c0 = 1 and ck = 0 for k > r;

(2) for the canonical map i : BU(r)→ BU(r + 1) we have

i∗c
(r+1)
k = c

(r)
k ;

(3) for the canonical map w : BU(r1)×BU(r2)→ B(r1 + r2) we have

w∗c(r1+r2) = c(r1) ^ c(r2)

(technically, we mean the pullbacks of c(r1) and c(r2) to the product space);

(4) c
(1)
1 is the canonical generator of H2(BU(1)) ∼= Z.

In the above, the map BU(r) → BU(r + 1) comes from the canonical embedding U(r) ↪→
U(r+ 1) and corresponds to Whitney summing a trivial bundle. The space BU(r1)×BU(r2)
should be thought of as classifying pairs of a rank r1 and rank r2 bundle, and the induced map
to BU(r1+r2) is to be thought of as taking the Whitney sum and forgetting the decomposition
as a pair.

6. Definition of the Chern Classes

We can now define the Chern classes of a general bundle using the universal Chern classes:

Definition 6.1. Given ν ∈ VectCr (X) and f : X → BU(r) classifying it (that is, ν = f∗γr),
we define the degree k Chern class as ck(ν) = f∗ck, and the total Chern class to be

c(ν) = 1 + c1(ν) + c2(ν) + · · ·+ cr(ν) = f∗c.
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Naturality of the Chern classes (Axiom 2 of Definition 4.1) follows directly from the above
definition. Indeed, suppose that g : X → Y is a continuous map and ν is a vector bundle over
Y , classified by the map f : Y → BU(r). Then g∗ν ∼= g∗(f∗γr) = (f ◦g)∗γr, so g∗ν is classified
by the map g ◦ f . Hence c(g∗ν) = (g ◦ f)∗c = g∗(f∗c) = g∗c(ν), as desired.

The other 3 axioms of the Chern class follow from the corresponding axioms of the universal
Chern classes.

For example, the Whitney sum formula: Given a sum of a rank r1 and rank r2 bundles
ν ⊕ ξ classified by f : X → BU(n), one can factor f through BU(r1) × BU(r2), writing
f = w ◦ (fν × fξ) (where fν and fξ classify ν and ξ, resp.). Then

f∗c = (w ◦ (fν × fξ))∗c = (fν × fξ)∗(w∗c) = (fν × fξ)∗(c(r1) ^ c(r2)),

where c = c(r1+r2) and, technically, c(ri) = π∗i c
(ri). The cup product above can be rewritten as

the cup product of

(fν × fξ)∗(π∗1c(r1)) = (π1 ◦ fν × fξ)∗c(r1) = f∗ν c
(r1) = c(ν)

with, similarly, (fν × fξ)∗(π∗2c(r2)) = c(ξ). So c(ν ⊕ ξ) := f∗c = c(ν) ^ c(ξ), as desired.

In addition to the nice Whitney sum formula for sums of bundles, you might hope that things
work neatly with the tensor product too. They do, but only in degree one:

Theorem 6.2. For two rank 1 bundles ν and ξ we have that

c1(ν ⊗ ξ) = c1(ν) + c1(ξ).

The space CP∞ ∼= BU(1) can be given a CW decomposition and has homotopy groups concen-
trated in degree 2, where we have π2(BU(1)) ∼= Z. As such, one calls BU(1) an Eilenberg–Mac
Lane space (usually denoted K(Z, 2)). Just as one has classifying spaces to represent the func-
tor Vectn(−), cohomology is represented by the Eilenberg–Mac Lane spectrum, in particular
we have natural identifications

VectC1 (X) ∼= [X,BU(1)] ∼= H2(X)

for X a CW complex (or for weirder spaces if one replaces H∗(−) with a more ‘continuous’
functor like Čech cohomology).

Theorem 6.3. One has an isomorphism of groups, induced by taking the first Chern class:

c1 : (VectC1 (X),⊗)
∼=−→ (H2(X),+).

The bijection [X,CP∞] → H2(X) is given by f 7→ f∗(c1), where c1 is the universal Chern
class, the generator of H∗(CP∞) ∼= Z[c1], so c1(−) is a complete invariant for complex line
bundles.

7. The Chern Character

Let X now be a compact space. We have the set Vect(X) of C-vector bundles over X. Given
two vector bundles ν and ξ, we can take their sum ν⊕ξ as well as their tensor product ν⊗ξ. By
taking formal differences (the ‘group completion’ or ‘Grothendieck group’) of (Vect(X),⊕,⊗),
one gets a commutative ring, the K-theory of X, denoted K0(X).

It follows that for an element of K0(X) we can construct elements in H∗(X), by taking some
combination of Chern classes. What we’d really like is that doing so gives a ring homomorphism
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between K-theory and cohomology; we’ve already seen that taking Chern classes has some
algebraic consistency with Whitney sums and tensor products (the Whitney sum formula
and the above theorem). To construct an actual ring homomorphism we need to pass to
Q-coefficient cohomology, and then exponentiate:

Definition 7.1. Let t1, . . . , tr be the Chern roots for rank r bundles. We define the universal
Chern class to be the element

ch := exp t1 + exp t2 + · · ·+ exp tr ∈
∞∏
i=0

H2i(BU(r);Q),

where

exp ti = 1 +
∞∑
i=0

tki /k!.

Notice that the degree k part (times k!) of the above is tk1 +tk2 + · · ·+tkr . Since this is symmetric
in the ti, by convention it defines an expression in Chern classes. Indeed, in degree k,

tk1 + tk2 + · · ·+ tkr = sk(c1, c2, . . . , ck),

where sk is the Newton polynomial which expresses tk1 + tk2 + · · · + tkr as a polynomial in the
elementary symmetric polynomials (corresponding to the ci). For example,

s1(x) = x, s2(x, y) = x2 − 2y, s3(x, y, z) = x3 − 3xy + 3z;

the elementary symmetric polynomials (for, say, r = 3) are

c1 = t1 + t2 + t3, c2 = t1t2 + t1t3 + t2t3, c3 = t1t2t3, ck = 0, (k > 3)

and indeed

s1(c1) = t1 + t2 + t3,

s2(c1, c2) = (t1 + t2 + t3)
2 − 2(t1t2 + t1t3 + t2t3) = t21 + t22 + t23,

s3(c1, c2, c3) = (t1 + t2 + t3)
3 − 3(t1t2 + t1t3 + t2t3) + 3(t1t2t3) = t31 + t32 + t33.

The Newton polynomials sk don’t actually depend on r, with the neat consequence that only
the constant term below depends on the rank r:

ch = r +
∞∑
k=1

sk(c1, . . . , ck)/k! = n+ c1 + (c21 − c2)/2 + (c31 − 3c1c2 + 3c3)/3! + · · · .

Definition 7.2. For a rank r vector bundle ν classified by f : X → BU(r) we define its Chern
character to be

ch(ν) := f∗(ch) = r +

∞∑
k=1

sk(c1(ν), c2(ν), . . . , ck(ν))/k! ∈ Heven(X;Q) :=

∞∏
i=0

H2i(X;Q) .

One can also apply this formula to a formal difference of vector bundles, so to an element of
K-theory. The beautiful thing is that this induces a well-defined ring homomorphism:

Theorem 7.3. The Chern character defines a ring homomorphism5

ch: K0(X)→ Heven(X;Q).

5Of course this is contained in H∗(X;Q) (the direct sum) so long as Hn(X;Q) ∼= 0 for sufficiently large n.
Our spaces are currently compact and all CW complexes have this property; if your space doesn’t then you
probably don’t want to be looking at H∗(X;Q).
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That it is additive for direct sums of line bundles follows from the Whitney sum formula and
that it is multiplicative follows from Theorem 6.3. Then ch is additive and multiplicative on
all bundles by the ‘Splitting Principle’6. Consequently it extends in a well-defined way to a
ring homomorphism from K0(X). Amazingly, it is very close to an isomorphism, we have the
Chern isomorphism:

Theorem 7.4. By tensoring with Q the Chern character induces an isomorphism

ch: K0(X)⊗Q
∼=−→ Heven(X;Q)

for finite CW complexes X.

The proof goes roughly as follows. Firstly, note that the Chern character is natural; this follows
directly from the fact that the Chern classes are natural (commute with taking induced maps
of conntiuous maps). The theorem obviously holds for the one-point space. It is then a general
fact that a natural transformation between two cohomology theories which agree on the point
agree on all finite CW complexes. This is because the identification of the cohomology with
cellular cohomology only uses the Eilenberg–Steenrod axioms, so a calculation for one will
reproduce the same calculation for the other.

Replacing H∗ with a more continuous functor (sheaf or Čech cohomology) the above holds for
more general kinds of compact spaces. By suspending we also get an isomorphism K1(X) ∼=
Hodd(X;Q).

For finite CW complexes, the K-theory and cohomology groups are finitely generated free
Abelian groups, so isomorphic to Zk + T for some k ∈ N0 and finite torsion group T . The
Chern isomorphism says that for K0 ∼= Zk⊕T we may determine k as the sum of the ranks of
the free parts of the even cohomology (and similar for K1 and the odd cohomology groups).
To say something more, on the torsion, one needs more complicated tools, such as the Atiyah–
Hirzebruch spectral sequence. The torsion can indeed differ; for example K0(RP 2k) ∼= Z⊕Z/2k
but Heven(RP 2k) ∼= Z⊕ (Z/2)k.

Appendix A. Complex bundles on spheres

We continue Example 2.9 on VectCr (Sn) ∼= πn−1(U(r)). You’ll need to know about fibre bundles
and homotopy groups to make sense of most of this.

For n = 1, since the unitary groups are connected (proven by the fact that matrices can be
diagonalised), we have that π0(U(r)) ∼= 0 so the only C-vector bundles over S1 are the trivial
bundles.

For larger n, we consider the fibre bundle

U(r)
det−−→ U(1),

where U(1) ∼= S1 and the above has fibres homeomorphic to SU(r), the group of special
unitary matrices (unitary matrices with determinant 1). This gives a long exact sequence of

6This says that, given a bundle ν over X, one may pull it back to a bundle p∗ν over some space Y so that
p∗ν is a sum of line bundles and p induces an injection on cohomology. The moral is then that ‘cohomological
identities that hold for all sums of line bundles must also hold for general bundles’. Easy exercise: use this to
show that the Chern classes are characterised by the axioms of Definition 4.1.
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homotopy groups
(A.1)

· · · → 0→ πn(SU(r))
∼=−→ πn(U(r))→ 0→ · · · 0→ π1(SU(r))→ π1(U(r))→ π1(S

1) ∼= Z→ 1.

Now, a matrix of SU(r) defines a point of S2r−1 ⊆ Cr, by acting on a base point of the unit
sphere. This is in fact a fibre bundle

SU(r)→ S2r−1

with fibres homeomorphic to SU(r − 1) so we get a LES ending

· · · → π1(SU(r − 1))→ π1(SU(r))→ π1(S
2r−1)→ 0.

For r = 2, SU(1) is the trivial group and SU(2) ∼= S3, so π1(SU(2)) ∼= 0 as the spheres are
simply connected: πn(Sk) ∼= 0 for all n < k. From the LES above, we see by induction that
each SU(r) is also simply connected. From the LES of Equation A.1 we see that we have
bijections:

VectCr (S2) ∼= π1(U(r)) ∼= Z,
For r = 1, VectC1 (S2) is a group with addition given by taking the tensor product of line
bundles (c.f., Theorem 6.3) and the above is actually an isomorphism of groups. It doesn’t
take much more work to show that the maps BU(r) → BU(r + 1) given by the diagonal
embedding induce an isomorphism on π1. This corresponds to taking the Whitney sum with a
trivial bundle, so in fact: every C-bundle over S2 is a sum of copies of a single line bundle γ,
or its dual bundle, and the rank 1 trivial bundle. One may also prove that γ⊕ γ = (γ⊗ γ)⊕ 1,
where 1 is the rank 1 trivial bundle, which completely describes (VectC(S2),⊕,⊗).

For higher dimensional spheres things are a lot more complicated; one needs to calculate the
higher homotopy groups of U(r) (equivalently SU(r)). One can find tables of these for low
enough values; for example: over the S5 there is 1 rank one C-bundle, 12 rank two bundles,
6 rank three bundles and just a trivial rank four bundle. Classifying R-bundles is even more
difficult.
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