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Abstract

Notes and exercises to supplement the mini-course Topological Methods in
Aperiodicity, Universität Wien, 7–9 June 2017. For time and space’s sake,
there will be many omissions here: several covered in the lectures, a few
unintended, some strategically intended, and many regretfully intended. For
many of these gaps, there is plenty of good literature to consult (please ask,
or see the bibliography). Much of this material can be found in Sadun’s book
[27], which is good starting place for any newcomer to the field.



Session 1

Aperiodic order

1.1 Some motivating examples of aperiodic

order

1.1.1 Beatty sequences and Sturmian sequences

Take an irrational number θ > 0 and consider the sequence of integers

(Bn)n∈N = bθc, b2 · θc, b3 · θc, b4 · θc, b5 · θc, . . . ,

where bxc = max{n ∈ Z | n ≤ x} denotes the floor of x. Such a sequence
is called a Beatty sequence. The values of (Bn)n∈N jump by integer values
of either bθc + 1 or bθc; denote these jumps by a and b, respectively. This
defines a new sequence (Sn)n∈N on the alphabet {a, b}. For example, for
θ = (1 +

√
5)/2 the golden ratio, we get the sequence:

a, b, a, a, b, a, b, a, a, b, a, a, b, . . . .

Sequences formed in this way have some very interesting properties. They
are highly ‘repetitive’: any finite sub-word (i.e., a finite sequence of letters
Sl, Sl+1, Sl+2, . . . , Sr−1, Sr) will reappear with some frequency across the en-
tire word; in particular it will be found in any sub-word of a sufficiently large
length (in fact, for the Fibonacci sequence coming from the golden ratio, there
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exists a C > 0 so that any sub-word of length n occurs inside any other of
length C ·n). On the other hand, it is not ‘(eventually) periodic’: there does
not exist some n ∈ N for which Sk = Sk+n for all sufficiently large k ∈ N. Se-
quences coming from this construction turn out to have the smallest number
of sub-words possible for non-periodic sequences: there are precisely n + 1
sub-words of length n for all n ∈ N. Such words are called Sturmian (in
fact, essentially all Sturmian sequences come from a construction like this
one [11]).

A periodic sequence would automatically be repetitive, and there is little to
discover about its structure, being such a simple sequence (a concatenation
vvv . . . for some finite word v). We are interested in patterns like the Fi-
bonacci sequence above, which are clearly highly structured—say, because
they are highly repetitive—and yet are not periodic.

1.1.2 Cut-and-project sets

There is an alternative construction of the Sturmian words—via the cut-
and-project method—which is highly generalisable (see also the approach via
cutting sequences [29]). In fact, we shall look only at a special case of the
construction, but we shall indicate how one generalises further. We start
with the following data:

• a Euclidean space Rk called the total space;

• a subspace E of Rk of dimension d with 0 < d < k, called the physical
space;

• a subset W ⊂ Rk called the window.

The window is typically a simple subset, like a hypercube. This defines the
strip S := E +W , which we think of as a thickened version of E. Given
s ∈ Rk, the lifted cut-and-project set Ỹs associated to all of this data is given
by:

Ỹs := (Zk + s) ∩ S,

i.e., it is given by elements of the shifted lattice Zk + s which fall into the
strip. We define the cut-and-project set Ys by projecting Ỹs onto E, say
via orthogonal projection (one could generalise mildly here and allow dif-
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ferent projections. The choice of projection typically does not play a large
rôle).

Most subspaces E can be given as the graph of a family of linear forms
Li : Rd → R, for i = 1, . . . , k−d. We set L(x) := (L1(x), . . . , Lk−d(x)) ∈ Rk−d

for x ∈ Rd, and then

E := {(x, L(x)) | x ∈ Rd}.

When the window W is chosen carefully, geometric properties of the asso-
ciated cut-and-project sets are closely linked to number theoretic properties
of L. There are two standard choices: the canonical window is defined as
[0, 1]k and the cubical window is defined as {0}d× [0, 1]k−d (both look rather
‘cubical’, but usually one instead considers projections of these subsets to
an ‘internal space’ complementary to E, in which case the canonical window
can be a more general polytope). In either case, for s ∈ Rk with Zk + s
not intersecting the boundary of the strip (such points are called regular 1)
the resulting cut-and-project sets are ‘repetitive’ (see Definition 1.2.4), and
are not periodic if and only if L(n) /∈ Zk−d for all non-zero lattice points
n ∈ Zd. Saying that such a cut-and-project set Y is not periodic is to say
that Y + x 6= Y for any non-zero x ∈ E.

Exercise 1.1.1. Prove the above, i.e., that a canonical or cubical cut-and-
project set associated to L will have a period if and only if there is some
non-zero n ∈ Zd with L(n) ∈ Zk−d. Of course there is nothing special
about the canonical or cubical window here; you may also like to consider
more general ‘sufficiently nice’ windows (so you should also figure out what
‘sufficiently nice’ could mean, see also the below exercise).

Exercise 1.1.2. Consider a cut-and-project scheme associated to L with
L(n) /∈ Zk−d for all non-zero n ∈ Zd. Find simple conditions for the window
W which ensure that the associated regular cut-and-project sets are Delone
sets (see Definition 1.2.1).

Let us see how Sturmian sequences can be defined via the cut-and-project
method. The irrational θ defines a one-dimensional subspace E of R2, the
line of slope θ (you may also consider E as the graph of the linear form

1One needs to be slightly careful on the definition of the cut-and-project sets associated
to non-regular s ∈ Rk. They should be given as limits of regular cut-and-project sets, more
on this in the lectures.
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L(x) = θx). Consider the lifted cut-and-project set Ỹ associated to this
setup, with s = 0 and cubical window. For each k ∈ N, there is precisely one
nk ∈ N with (k, nk) ∈ S, in fact it is easy to see that nk = dkθe. Since kθ is
irrational we thus have that

nk+1 − nk = d(k + 1)θe − dkθe = (b(k + 1)θc+ 1)− (bkθc+ 1) = Sk,

so the sequence of jumps (nk)k∈N of the vertical displacement precisely matches
that of the Sturmian sequence (Sn)n∈N associated to θ. To form the cut-
and-project set Y , we project the points of Ỹ onto the line E; for suitable
projections, the gaps between successive intervals will be one of two lengths,
in a sequence precisely matching (Sn)n∈N. Of course, the cut-and-project set
extends infinitely to the left too, and we can extend (Sn)n∈N to a bi-infinite
sequence (Sn)n∈Z in an obvious way. We need to be careful at the origin: we
should take (0, 0) ∈ Ỹ but not (0, 1) in this case. This is related to s = 0 not
being a regular value, as mentioned. For regular s ∈ R2, the cut-and-project
set will correspond to the gaps between values of a ‘shifted’ Beatty sequence
Bn := bnθ + rc for r ∈ R. The non-regular values correspond to r with
nθ + r = k ∈ Z for some n ∈ Z; in this case, there is a good reason to allow
for two corresponding Beatty sequences with Bn = k and Bn = k+1 to be in
the family. In the cut-and-project approach, these occur as ‘limits’ of regular
cut-and-project sets, see Subsection 2.1.

Exercise 1.1.3. Relate the bi-infinite Sturmian sequence (Sn)n∈Z associated
to irrational θ to the cut-and-project set with s = 0, physical space E ⊆ R2

the line of slope θ, and canonical window (again, because s is not regular
you will want to remove a lattice point of the strip near the origin).

There are several ways that all of this could be generalised. For example, one
could consider different lattices to Zk in the total space, and one could also
consider total spaces which are not Euclidean. For example, one may find a
cut-and-project scheme whose patterns correspond to Thue–Morse sequences,
which is not possible with a Euclidean cut-and-project scheme.

1.1.3 Substitution tilings

Consider the Fibonacci substitution

σ(a) = ab, σ(b) = a.
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This rule can be repeatedly applied to any finite word. For example, starting
with the letter a:

a 7→ ab 7→ aba 7→ abaab 7→ abaababa 7→ abaababaabaab 7→ · · ·

We’ve already seen that last word before... in fact, repeated application
of σ defines longer and longer words, all of which agree precisely with the
Sturmian sequence (Sn)n∈N associated to the golden ratio!

Given a general symbolic substitution σ over a finite alphabet A, one con-
siders the collection of allowed bi-infinite words S ∈ AZ for which for any
finite sub-word w of S, there exists a letter a ∈ A and some n ∈ N for
which w is also a sub-word of σn(a). Under certain conditions on σ such
allowed sequences S exist and have several interesting properties: they will
be non-periodic, repetitive (in fact, linearly repetitive, see Definition 1.2.4)
and have the property that σ(S) is also an allowed sequence. In fact, one can
always de-substitute S, that is, find a word S ′ with σ(S ′) equal to S up to a
small shift (we can get equality in the geometric setting, allowing the origin
to sit in interior of a tile). This imbues the allowed words with an interesting
hierarchical structure, which shall be explained in the lectures.

Just as the more symbolic Sturmian sequences could be generalised to higher
dimensions with added geometrical considerations, so too can the idea of
a sequence generated by a substitution. The details shall be given in the
lectures (see also [1]). Also see http://tilings.math.uni-bielefeld.de/ for a
nice catalogue of substitution tilings.

1.2 Euclidean patterns

We wish to study ‘patterns’ or ‘decorations’ of Rd. Here, by this we shall
always mean either a tiling or Delone set:

Definition 1.2.1. A tile of Rd is a compact subset of Rd which is equal to the
closure of its interior. A tiling of Rd is a set T of tiles for which Rd =

⋃
t∈T t

and distinct tiles intersect only on their boundaries.

A Delone set is a subset X ⊂ Rd which is R-relatively dense and r-uniformly
discrete for some R, r > 0 i.e., Rd =

⋃
x∈X B(x,R) and B(x, r)∩B(y, r) = ∅

for distinct x, y ∈ X.
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There are various ways in which the above definitions could be generalised.
For example, we may want to allow tiles to overlap on more than just their
boundaries (see Gummelt’s representation of the Penrose tilings). One may
also wish to weaken the relatively dense and uniformly discrete condition
for Delone sets—for example, one may be interested in the point set X :=
{(x, y) ∈ Z2 | gcd(x, y) = 1} consisting of points which are visible from the
origin; this set contains arbitrarily large ‘holes’ and is thus not relatively
dense. One frequently also wishes to add labels to tiles of tilings, or points
of a Delone sets.

Whatever the form of our pattern P , what these situations have in common
is that there is a notion of “the sub-patch of P at the subset U ⊆ Rd”; we
denote this by P [U ]. More concretely, when our pattern is defined by a tiling
T we define

T [U ] := {t ∈ T | t ∩ U 6= ∅}.

For a Delone set X,
X[U ] := {x ∈ X | x ∈ U}.

Generally, we shall refer to a decoration P [U ] for a pattern P and bounded
U ⊆ Rd a finite patch of P .

We let

P (r) := {(x, y) ∈ Rd × Rd | P [B(x, r)]− x = P [B(y, r)]− y}.

So (x, y) ∈ P (r) means that “the pattern P agrees locally at x and y to
radius r”. Notice that each P (r) defines an equivalence relation, and that
P (R) ⊆ P (r) for r ≤ R.

1.2.1 Finite local complexity

Definition 1.2.2. Say that P has finite local complexity (FLC) if, for all
r > 0, there are only finitely many patches P [B(x, r)] up to translation.

Exercise 1.2.1. Show that the following are equivalent for a tiling T :

1. T has FLC;

2. for all r > 0, there exists a compact subset Kr ⊂ Rd such that Kr

contains a representative of each equivalence class of T (r);
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3. there are only finitely many n-coronae up to translation in the tiling
for each n ∈ N0 (see Subsection 2.5.2);

4. there are only finitely many two-tile patches, up to translation. Here,
a two-tile patch is a pair of tiles in T intersecting somewhere on their
boundaries.

Exercise 1.2.2. Show that the following are equivalent for a Delone set X:

1. X has FLC;

2. for all r > 0, there exists a compact subset Kr ⊂ Rd such that Kr

contains a representative of each equivalence class of X(r);

3. the set X −X := {x− y | x, y ∈ X} is discrete and closed;

4. the set B(0, 2R) ∩ (X −X) is finite, where X is R-relatively dense.

So FLC patterns have a kind of combinatorial nature, they have only finitely
many local configurations which piece together to define the entire pattern.
Have in mind something like a tiling of a finite number of polygonal tile types
(up to translation), always meeting full-face to full-face, or a Delone set where
there are only finitely many displacements between ‘close’ points.

1.2.2 Mutual local derivability

Definition 1.2.3. A pattern P is locally derivable fromQ if there exists r > 0
so that, if Q[B(x, r)]−x = Q[B(y, r)]−y, then P [B(x, 1)]−x = P [B(y, 1)]−y.
If, additionally, Q is locally derivable from P , then we say that P and Q are
mutually locally derivable (MLD).

The value of 1 in P [B(x, 1)] − x = P [B(y, 1)] is arbitrary: the idea is that
a sufficiently large radius of the pattern Q at a point x determines precisely
the decoration of P to some radius at x. Loosely, there is a local rule for
redecorating Q to get P . This could lose information (e.g., scrubbing the
colours of an otherwise periodic tiling); if it is a ‘reversible’ operation then
the two patterns are MLD.

Example 1.2.1. The Penrose tilings can be represented via ‘Penrose rhombs’,
as Delone sets of vertices of Penrose rhomb tilings (which are cut-and-project
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sets), ‘kite and dart’ tilings, ‘Robinson triangle tilings’ (which are substitu-
tion tilings) or via coverings of overlapping Gummelt decagons. All of these
are MLD to each other.

Exercise 1.2.3. Show that an FLC tiling is always MLD to an FLC Delone
set, and vice versa.

Exercise 1.2.4. Show that any arrow tiling is MLD to a chair tiling, and
any chair tiling is MLD to an arrow tiling (defined as in the lectures).

1.2.3 Repetitivity

The above partially justifies our indifference as to the precise representation
of our patterns. What’s important for us is not the particular choice of how
to represent a pattern, but how features of a pattern repeat.

Definition 1.2.4. A pattern P is called repetitive (or, more specifically,
ϕ-repetitive) if, for sufficiently large r > 0, each ball B(x, ϕ(r)) contains a
representative of every equivalence class of P (r). We call P linearly repetitive
if we can choose φ(r) ≤ Cr for some C > 0.

So an FLC pattern is repetitive if every finite patch of the pattern can be
found within some bounded distance of any point of the pattern. The notion
of ϕ-repetitivity gives a more quantitative measure of order: a pattern which
is ϕ-repetitive for a ‘small’ function ϕ is considered to be highly ordered.
Linear repetitivity was studied by Lagarias and Pleasants as a property sig-
nifying high structural order, they called linearly repetitive patterns perfectly
ordered quasicrystals [23]. Of course, a pattern is periodic if and only if it is
ϕ-repetitive for ϕ bounded.

Exercise 1.2.5. Show that if P is locally derivable from a pattern Q which
is ϕ-repetitive, then P is ϕ′-repetitive with

ϕ′(r) ≤ ϕ(r + c1) + c2

for constants c1, c2 ∈ R. In particular, being linearly repetitive is an MLD
invariant.
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1.3 Example research topics in the dynamics

and topology of pattern spaces

In Session 2 we shall define the pattern space of a pattern. Before doing so, we
shall motivate its definition through a couple of examples of its appearance
in aperiodic order and elsewhere. Therefore the following shall be a sketchy
overview to whet one’s appetite, so please bear with the occasional leaps of
faith in this section.

1.3.1 Dynamics and diffraction

We know of the existence of aperiodically ordered patterns occurring in ma-
terials because of their diffraction. In 1982, Dan Shechtman observed a
diffraction pattern of a metallic alloy with five-fold rotational symmetry. No
periodic arrangement could exhibit this kind of symmetry, but the material
was clearly highly ordered due to its beautiful diffraction pattern of sharp
Bragg peaks.

One mathematical idealisation of what it means for a pattern to have this
kind of diffraction is for it to have ‘pure point diffraction’. I don’t have the
time to cover the ground between the physical idea and the mathematical
formalisation (of which see [10, 24, 5]), but here is an abstract version of
the property of interest which is equivalent for a large class of patterns:
To our pattern P , we shall see how to associate to it a dynamical system
(ΩP ,Rd). In many cases of interest it will be uniquely ergodic, so comes
equipped with a certain invariant measure (this is all related to the existence
of ‘uniform patch frequencies’). Associated to this topological dynamical
system there is another: the maximal equicontinuous factor (MEF), onto
which the dynamical system (ΩP ,Rd) factors. Our pattern has pure point
dynamical spectrum (we shall sometimes say pp. diffraction) precisely when
the factor map to the MEF is almost everywhere one-to-one. In this case,
measure theoretically the pattern space is conjugate to a rotation on an
Abelian topological group (but topologically this is far from true!).

Patterns coming from the cut-and-project method always have pp. diffrac-
tion. The question of which patterns arising from substitutions have pp.
diffraction is much more interesting and difficult.
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Example 1.3.1. The tilings associated to the famous Fibonacci substitution

σF =

{
a 7→ ab

b 7→ a

can also be described in terms of the cut-and-project method, as we saw, so
this system has pp. diffraction. The MEF here is the 2-torus S1 × S1. More
generally, the MEF of a Euclidean cut-and-project set is a k-torus, with k
the dimension of the total space.

Example 1.3.2. The period doubling system with substitution

σPD =

{
a 7→ ab

b 7→ aa

has pp. diffraction; its MEF is the dyadic solenoid (the inverse limit of the
circle S1 with the ×2 covering map). The Thue–Morse system with substi-
tution

σTM =

{
a 7→ ab

b 7→ ba

factors 2-to-1 to the period doubling system, so its diffraction is not pure
point.

The main conjecture in this area is the Pisot Conjecture:

Conjecture (Pisot Conjecture). The dynamical system associated to a 1-
dimensional irreducible Pisot substitution has pure point dynamical spectrum.

This conjecture has many forms; some also add the assumption of unimod-
ular. A quick explanation of the terms here: A substitution is Pisot if its
inflation constant λ ∈ R>1 is a Pisot number i.e., an algebraic integer for
which the other roots of the minimal polynomial p of λ lie inside the unit
circle of C. It is irreducible if the characteristic polynomial of the Abeliani-
sation of the substitution is irreducible (so is equal to p). It is unimodular if
the constant term of p is equal to ±1.

The property of pp. diffraction is determined by the topological dynamical
system (ΩP ,Rd). And this dynamical system, up to a linear rescaling, is
in fact determined just by the topological space ΩP due to rigidity results
[22]. So there is good reason to expect (and want!) to replace the irreducible
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assumption of the Pisot conjecture with topological conditions. For some
development of this point of view, see [3].

1.3.2 Topological invariants of patterns

We see in the above that it is of interest to understand the topology of the
space ΩP . One typically does this by applying some topological invariant,
say I. One has natural questions:

1. How does one compute I(ΩP )?

2. Can I(ΩP ) be understood in a direct way from the structure of P?

3. Can the invariant I(ΩP ) be used to answer questions related to aperi-
odic order?

Here are some topological invariants that I know of, and these questions
addressed for each:

Example 1.3.3 (Čech cohomology).

1. The most commonly studied topological invariant of ΩP is the Čech co-
homology Ȟ•(ΩP ). We have methods of computing it for substitution
tilings (as we shall see) and cut-and-project sets, although the complex-
ity of the computations increases drastically as the dimensions increase
(especially the codimension in the case of cut-and-project sets).

2. Whilst there is probably still more to understand in what rôle the Čech
cohomology plays in the structure of a pattern, we already understand
quite a lot about it. In degree one it describes shape deformations of
P [9] and more generally homeomorphisms of ΩP [17]. There is a way
of visualising it (over R-coefficients) using pattern-equivariant forms
[18] and (over general coefficients) using pattern-equivariant cellular
cochains [26] (or chains [31]).

3. The Čech cohomology may play an important rôle in the Pisot conjec-
ture [3]. Kelly and Sadun have demonstrated interesting connections to
discrepancy problems in number theory via the cut-and-project method
[21].

Example 1.3.4 (K-theory).
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1. For low-dimensional tilings (i.e., d ≤ 3) the situation for computability
is as for Čech cohomology. Little is known in higher dimensions; as
yet, there is no known counter example to the isomorphisms:

K0(ΩP ) ∼=
⊕
k even

Ȟk(ΩP ) and K1(ΩP ) ∼=
⊕
k odd

Ȟk(ΩP )

which hold for FLC patterns of dimensions d ≤ 3 (but likely only
through an inability to make these computations).

2. As ever, one may visualise K-theory via vector bundles; one may proba-
bly formalise the idea of ‘pattern-equivariant vector bundles’ to describe
these K-groups directly from the pattern, but I’m not sure whether or
not this would be useful. There is certainly more to learn!

3. K-theory features in the gap-labelling theorem [6, 7]. It says, roughly
speaking, that gaps in the energy spectrum of a Schödinger operator
associated to an aperiodic potential can be labelled by elements of the
K-groups. So this rather abstract topological invariant, amazingly,
is linked with physics. This link is made through a noncommutative
geometry approach.

Example 1.3.5 (Homotopy).

1. As we shall see, the classical homotopy groups are not well-suited to
studying ΩP . But one can define certain diagrams of homotopy groups
in terms of the approximants (see Subsection 2.5.1) and take limits.
At present, the computations seem to be restricted mostly to one-
dimensional substitution tilings.

2. At current these invariants only have a rather abstract form with re-
spect to the original patterns.

3. Work of Clark and Hunton shows that these invariants can be used
to study whether ΩP may be given as a subspace of a surface as a
codimension one hyperbolic attractor [8].

1.3.3 Cut-and-project sets and number theory

The cut-and-project method provides an interesting connection between ape-
riodic order and number theory. Here we shall briefly outline two such links,
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to Diophantine approximation and to discrepancy theory.

Let L be a linear form L : Rd → R. In Diophantine approximation, such
a linear form is called badly approximable if there exists some C > 0 for
which

‖L(n)‖ ≥ C

|n|d

for all non-zero n ∈ Zd, where ‖x‖ denotes the distance to the nearest integer
from x.

Example 1.3.6. A linear form of one variable is given by L(x) = θx, so we
may think of it simply as a single number. It can be shown that such a linear
form (with irrational θ) is badly approximable if and only if θ has bounded
entries in its continued fraction expansion.

Theorem 1.3.1 (Haynes–Koivusalo–W [16]). Let L be a linear form with
L(n) 6= 0 for all non-zero n ∈ Zd, and P be an associated codimension 1
canonical cut-and-project set. The following are equivalent:

1. L is badly approximable;

2. P is linearly repetitive.

This extends a classical result of Hedlund and Morse. Note that the condition
L(n) 6= 0 simply rules out periodicity. The above theorem has a generalisa-
tion to higher codimensions but one must replace the canonical window with
the cubical window (the two choices give MLD patterns in the codimension
1 case, but not in higher codimensions).

Exercise 1.3.1. Prove the above claim, that a regular codimension 1 cut-
and-project set with cubical window is MLD to the corresponding cut-and-
project set with canonical window. Show that in higher codimensions (k−d >
1) a cut-and-project set with cubical window is locally derivable from that
of the canonical window, but that typically the two are not MLD.

Conditions on the linear form L can induce quite strong restrictions on the
frequencies of appearances of patterns in cut-and-project sets, see [15]. One
may also use discrepancy theory to study these aperiodic patterns [14]. In
the reverse direction, one may use aperiodic order and pattern cohomology to
study discrepancy theory. To greatly summarise, there are situations where
one may identify the problem of showing that a certain sequence has bounded
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discrepancy, to the problem of showing that a special cohomology class of ΩP

of an associated pattern P belongs to a special subgroup of ‘asymptotically
negligible’ cocycles. For more details, see [21].
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Session 2

Pattern spaces

2.1 Pattern uniformity/metric

To a pattern P we shall associate a topological space ΩP called the pattern
space. One should think of it as a moduli space of other patterns which are
“locally indistinguishable” from P .

Let X be a set of patterns of Rd. For R, ε > 0, say that two patterns P,Q ∈ X
are (R, ε)-close if

(P + x)[B(0, R)] = (Q+ y)[B(0, R)]

for x, y ∈ Rd with |x|, |y| ≤ ε. That is, the patterns P and Q agree to radius
R about the origin after shifting each by at most distance ε (for non-FLC
patterns, it is better to allow a more general kind of ‘ε-wiggle’; see Appendix
A).

This defines a uniformity on X. If you don’t know about uniformities then
don’t worry. The important point is that there is a notion of closeness be-
tween patterns: P and Q are considered to be very close as patterns if they
are (R, ε)-close for some very large R and very small ε. This induces a topol-
ogy on X in the obvious way (think about how it is done for metric spaces),
and even the notion of a sequence (Pk)k∈N in X being Cauchy: when, for
any R > 0 and ε > 0 there exists some N ∈ N for which Pm and Pn are
(R, ε)-close for any m,n ≥ N . So we can define what it means for X to
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be complete i.e., when all Cauchy sequences in X converge to a limit in X.
When X is not complete, we can complete it in an analogous way to how
one completes a metric space; the completion is denoted by X.

Exercise 2.1.1. The above can be converted into a metric, although there
are different ways of doing this (so my preference is to stick with the less
arbitrary object). However, if you would rather think of the geometry as
induced by a metric: show that

d(P,Q) := min{1/
√

2, inf{ε > 0 | P,Q are (ε−1, ε)-close}}

defines a metric d : X×X → R. So we use the function R(ε) = ε−1 to remove
the independence of the R variable from the ε variable to define the metric;
other choices would work too, but one has to be careful then to make sure
that the triangle inequality holds (which is why one needs to cap the metric
at 1 in the above metric).

2.2 Pattern spaces

Definition 2.2.1. Let P be pattern with FLC. The pattern space of P is
defined as

ΩP := (P + Rd)

where P + Rd is the set of translates of P and the completion is taken as
described above.

Remark. Note that when P does not have FLC (e.g., for P a ‘pinwheel
tiling’), the geometry on the orbit P + Rd is not the right one, and ΩP if
defined as above is not the right space. See Appendix A.

It turns out that we need not think of ΩP as a completion. Say that Q
is locally indistinguishable from P if every finite patch of Q appears, up to
translation, in P .

Theorem 2.2.1. If P has FLC, then ΩP is a compact, connected space which
may be identified with the set of patterns which are locally indistinguishable
from Q (with the topology defined as above).

Exercise 2.2.1. Prove the above.
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Exercise 2.2.2. Note that the definition of ΩP still makes sense when P
does not have FLC, although then it is morally the wrong definition; see
Appendix A. Show that ΩP , as defined above, is compact if and only if P
has FLC.

Exercise 2.2.3. Show that if P is repetitive then P is locally indistinguish-
able from any Q ∈ ΩP , and vice versa. It follows that ΩP = ΩQ for any
Q ∈ ΩP .

Example 2.2.1. Let P be a periodic pattern of Rd. Then P+Rd is a d-torus
Td, which is compact and hence already complete, so ΩP = Td.

Exercise 2.2.4. Show that if P is FLC but non-periodic, there exists some
Q ∈ ΩP with Q 6= P + x for any x ∈ Rd.

It follows from the above exercise and Theorem 2.3.1 that the space ΩP is not
path-connected for FLC but non-periodic P . Since ΩP is always connected,
it follows that it is certainly not a CW complex. So typically ΩP is a rather
complicated space. For only the most basic examples can one meaningfully
sketch what these spaces look like:

Example 2.2.2. Let T be a tiling of R1 of tiles unit intervals, with endpoints
on Z, with all tiles to the left of the origin coloured black and all those to the
right coloured white. The pattern space ΩT contains the periodic tiling B
of black tiles and the periodic tiling W of white tiles (with endpoints on Z),
which are locally indistinguishable from T (although not vice versa!). So ΩT

contains two embedded circles SB and SW consisting of the translates of B
and W . The pattern space is connected but has three path components: the
circles SB and SW , and the path component containing T , which we think of
as a line which spirals in to SB as the origin is moved to the left (i.e., as we
consider tilings T +x as x→∞) and spirals in to SW as the origin is moved
the right (i.e., as we consider tilings T − x as x→∞). It kind of looks like
an everyone’s-favourite-stair-traversing-toyTM.

Exercise 2.2.5. What does the space ΩT look like for T the tiling of unit
interval white tiles, except with a single black tile?

Exercise 2.2.6. Define a tiling T of R1 of black and white unit interval tiles
so that ΩT contains precisely n embedded circles. Define another such tiling
T ′ so that ΩT ′ contains a copy of every possible tiling of black and white unit
interval tiles.
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Locally, a pattern space looks like the product U ×Ξ of an open ball U ⊂ Rd

and a compact, totally disconnected space Ξ. The U component parametrises
small translates of tilings, and the space Ξ parametrises different ways of
completing a large central patch of a tiling to a full tiling. Loosely, this is
totally disconnected because such a choice of full tiling consists of a sequence
of discrete choices of larger and larger extensions of the central patch.

Exercise 2.2.7. Formally prove the claims of the above paragraph.

Recall that a philosophy of ours here is that we only care about properties
of tilings which are MLD invariant:

Exercise 2.2.8. Show that if P and Q are MLD then ΩP and ΩQ are home-
omorphic. Show that if P and Q are affine transformations of each other,
then ΩP and ΩQ are homeomorphic.

2.3 Dynamics

There is an obvious action of Rd on the space ΩP , given by translation.
Indeed, recall that any point of ΩP may be considered as a pattern in its own
right. So a vector x ∈ Rd acts on Q ∈ ΩP via

x ·Q := Q+ x.

This makes ΩP with the action of Rd a dynamical system: that is, 0 ·Q = Q
and y · (x ·Q) = (y + x) ·Q for all Q ∈ ΩP and x, y ∈ Rd. For FLC pattern
spaces, there is quite a tight link between the dynamics and the topology,
because of the following:

Theorem 2.3.1. For an FLC pattern P , the path components of ΩP corre-
spond to the Rd orbits of the dynamical system i.e., two patterns of ΩP are
translates of each other if and only if they belong to the same path component
of ΩP .

Theorem 2.3.2. An FLC pattern P is repetitive if and only if the Rd-action
on ΩP is minimal, that is every orbit Q+ Rd is dense for all Q ∈ ΩP .

Exercise 2.3.1. Prove the above two theorems.
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Exercise 2.3.2. Show that if P is FLC, repetitive and non-periodic then so
is every other Q ∈ ΩP . Hence for all Q ∈ ΩP we have a continuous bijection

f : Rd → Q+ Rd

onto the path component of ΩP containing Q, so each path-component is
the continuous bijective image of Rd (note, however, that the map f−1 is
certainly not continuous). Show that there are in fact uncountably many
orbits/path-components in this repetitive case.

2.4 Global topology of pattern spaces

The above explains why the pattern space of a non-periodic but repetitive
pattern is so complicated, it consists of uncountably many copies of Rd, all
tightly scrunched up together to form the compact space ΩP . However, the
following theorem of Sadun and Williams provides a good picture of what
these spaces look like globally [28]:

Theorem 2.4.1 (Sadun–Williams [28]). The pattern space ΩP of an FLC
pattern P of Rd is a fibre bundle with fibre a compact totally disconnected
space (which is the Cantor space for P repetitive) and base the d-torus Td.

Remark. For those of you who haven’t met fibre bundles before: the above
intuitively means that ΩP is a ‘twisted product’ of a totally disconnected
space Ξ over Td. More explicitly, there exists a continuous surjection

p : ΩP → Td

such that there is a covering of Td with open subsets U (which we may take
here as homeomorphic to an open ball in Rd) and homeomorphisms

h : p−1(U)→ U × Ξ

satisfying p = π1 ◦ h, with π1 the projection (u, x) 7→ u.

Exercise 2.4.1. Prove the above theorem for an FLC tiling of R1 of interval
tiles, or an FLC Delone set of R1.
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Exercise 2.4.2. Prove the above theorem for an FLC tiling of Rd of unit
hypercubes, tiling in the usual periodic fashion, but perhaps labelled with
various colours.

Sadun and Williams’ proof amounts to showing that we may always reduce
to the above case, by converting a more general pattern to a hypercube tiling
through ‘shape deformations’ and MLD equivalences, neither of which change
the topology of the pattern space.

2.5 Approximant presentations for pattern spaces

2.5.1 Inverse limit presentations

An inverse limit diagram (here1) is a diagram

(Γ•, f•) = Γ0
f1←− Γ1

f2←− Γ2
f3←− Γ3

f4←− · · ·

of topological spaces Γi and continuous maps fi+1 : Γi+1 → Γi for all i ∈ N0.
Given such a diagram its inverse limit lim←−(Γ•, f•) (which we shall sometimes
denote by Γ∞) is defined by

Γ∞ = lim←−(Γ•, f•) = {(xi)i∈N0 ∈
∏
i∈N0

Γi | fi(xi) = xi−1},

with topology induced from being a subspace of the product
∏

Γi with the
standard product topology. We say that a space homeomorphic to Γ∞ has
inverse limit presentation (Γ•, f•). Although there need not be metrics here,
it is instructive to think of elements of the inverse limit as ‘consistent se-
quences’ of points from the approximants, two of which are ‘close’ when
they are sequences which are ‘close’ on the approximant spaces Xi for ‘large’
i.

1More generally, one may consider inverse limit diagrams to be indexed by some poset
(I,≤) which is directed i.e., for α1, α2 ∈ I there exists some β with β ≥ α1, α2. A
corresponding diagram consists of spaces Γα for all α ∈ I and continuous maps fβα : Γβ →
Γα for all α ≤ β satisfying fαγ = fαβ ◦ fβγ whenever α ≤ β ≤ γ. So the inverse limit
diagrams here are always based on the poset (N0 ≤), with ≤ the usual ordering on N0.
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Notice that we have canonical continuous maps γi : Γ∞ → Γi, given by send-
ing (xi)i∈N0 to xi ∈ Γi. These maps of course satisfy γi = fi+1 ◦ γi+1. As an
aside, the inverse limit above is really just an explicit construction of a space
satisfying a universal property for the diagram. Precisely, if there is another
space X also with continuous maps φi : X → Γi satisfying φi = fi+1◦φi, then
there is a continuous map g : X → Γ∞ making everything in sight commute:
φi = γi ◦ g for all i ∈ N0.

2.5.2 Gähler approximants

As we have seen, the pattern space ΩP of an FLC but non-periodic pattern
can be very complicated, and is not a CW complex. However, it turns out
that ΩP always has an inverse limit presentation in terms of CW complexes
with cellular maps between them.

Firstly, we shall restrict to FLC cellular tilings T . This means that T has a
CW decomposition into 0-cells, 1-cells,..., d-cells, the closed d-cells being the
tiles. These cells should form part of the decoration for the tiling, so T [U ]
and T [V ] agree up to translation only when their patches of tiles decorated
by the cell decomposition agree up to translation.

Exercise 2.5.1. Show that any FLC pattern is MLD to an FLC cellular
tiling.

The above exercise shows that no generality is lost, up to MLD equivalence,
by considering FLC cellular tilings. Given a tile t of the tiling, denote by
T [t, n] its n-corona, defined inductively as follows. The 0-corona T [t, 0] :=
{t}, i.e., it is the singleton patch containing just t. The n-corona T [t, n] is
the patch of tiles T [t, n−1] along with any other tiles t intersecting T [t, n−1]
non-trivially (so necessarily on the boundaries of these new tiles). In other
words, we define the n-corona by taking t and then iteratively appending
adjacent tiles to our patch n times.

Define a relation ∼′n on Rd by setting x ∼′n y if and only if x and y belong
to tiles tx and ty so that

T [tx, n]− x = T [ty, n]− y.

This won’t be a transitive relation for aperiodic tilings (exercise: why not?),
so we take its transitive closure to define an equivalence relation ∼n on Rd.
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The quotient space Γn = Rd/ ∼n is called the level n Gähler complex. A more
visual way of viewing this construction is as follows: define an n-collared
patch of T to be a pair (t, T [t, n]) of a tile t with its n-corona, taken up
to translation equivalence. By FLC there are only finitely many n-collared
patches. To construct Γn, we take a copy of a tile t for each n-collared
patch (t, T [t, n]), and glue them along their boundaries according to how the
n-collared patches can meet in T . These spaces are branched d-manifolds ;
locally they look like d-dimensional Euclidean space except at a (d − 1)-
dimensional set of branch points. These branch points can be thought of as
occurring when one passes over the boundary of an n-collared tile and there
are several choices of the next n-collared tile to jump to.

Exercise 2.5.2. Show that the quotient q : Rd → Γn maps the cells of T
homeomorphically onto Γn, so Γn carries an induced CW decomposition mak-
ing the quotient map q a cellular map.

There are canonical cellular maps fn : Γn → Γn−1, since elements of Rd iden-
tified under ∼n are certainly identified under ∼n−1. We think of these as
‘forgetful maps’: a point of Γn describes the location of a tile at the ori-
gin, along with some collaring information, and the forgetful map fn simply
forgets some of this collaring information.

Theorem 2.5.1. For a cellular tiling T with FLC, the inverse limit diagram
of Gähler approximants defines an inverse limit presentation for the pattern
space ΩP .

The idea of the proof is as follows: an element of Γn defines a patch of a
tiling of ΩP at the origin, and larger and larger such patches for increasing n.
An element in the inverse limit describes a consistent sequence of patches,
in other words a sequence of patches P0, P1, P2,. . . with each Pn nested as a
sub-patch of Pn+1. So the entire sequence of patches determines a tiling of
the pattern space. Two of these sequences are ‘close’ in the inverse limit if
and only if they are ‘close’ on each Γ1, . . . Γn for large n, which is to say that
large central patches of the two tilings agree up to a small translation, so the
corresponding tilings are also close in ΩP , and vice versa.

Exercise 2.5.3. Turn the above argument into a rigorous proof.
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2.5.3 Barge–Diamond–Hunton–Sadun approximants

There is an alternative construction of approximant presentations due to
Barge and Diamond in the 1d case, and then extended by them, Hunton and
Sadun for general dimensions. Recall the equivalence relation P (r) defined
in Section 1.2: x and y are related under P (r) precisely when the ‘r-patch’ of
tiles within radius r of x agrees with that at y up to a translation from x to
y. The quotient spaces Kr := Rd/P (r) are the BDHS approximants [4]. For
r ≤ R, the equivalence relation P (r) identifies more points than P (R), so we
have a natural quotient map fr,R : KR → Kr (again, think of it as ‘forgetful’:
a point x ∈ KR determines an R-patch at the origin, and fr,R(x) remembers
only the information of the r-patch at the origin).

Theorem 2.5.2 ([4]). Let P be an FLC pattern and r0 ≤ r1 ≤ r2 ≤ . . . an
increasing sequence with rn →∞. Then the corresponding inverse limit

Kr0

fr0,r1←−−− Kr1

fr1,r2←−−− Kr2

fr2,r3←−−− Kr3

fr3,r4←−−− Kr4

fr4,r5←−−− · · ·

of BDHS approximants is a presentation for ΩP .

Exercise 2.5.4. Prove the above theorem. It is easier than for the Gähler
approximants!

Both the Gähler approximants and the BDHS approximants are not much
use in making explicit computations for pattern spaces. The approximants
can become more and more complex as we go up the ladder. Their use is
more of theoretical value, as we shall see in visualising the Čech cohomology
of ΩP in terms of pattern-equivariant cochains.

Whilst, like the Gähler approximants, the BDHS approximants Kr are clearly
much tamer than the space ΩP , there is not an immediately obvious cell
structure on each Kr. This could be helped by changing the equivalence
relations P (r) a little. The power of these approximants, though, is that
they can be simple to describe for K(r) with r small, which is of use in
making computations for substitution tilings.

23



2.6 Inverse limit presentations for substitu-

tion tiling spaces

For a substitution tiling space Ω we can find a CW complex Γ with self-map
f : Γ→ Γ so that

Ω ∼= lim←−(Γ
f←− Γ

f←− Γ
f←− Γ

f←− · · · ).

The complex Γ is defined in terms of the local combinatorics of the tilings
(what tiles are there, how can they meet along a vertex, edge, etc.). The
self-map f is defined in terms of the substitution. There are essentially two
styles here; the original, pioneered by Anderson and Putnam [1], uses Gähler
type approximants (which were actually defined later for higher levels by
Gähler). We shall look at a later construction due to Barge and Diamond in
the one-dimensional case, and extended to higher dimensions later by them,
Hunton and Sadun [4].

Let σ be a tiling substitution (with various natural properties to make sure
everything works, see [1, 4]). It takes a tile type, inflates by some stretching
factor λ > 1, and substitutes the inflated tile with a patch of tiles of the
original size. A point of Kr determines a patch of radius r at the origin. So
it determines a patch of radius λr of tiles dilated by λ, and therefore also a
patch of radius λr of substituted tiles. This defines the self-map f : Kr → Kr

of the BDHS approximant.

Theorem 2.6.1 ([4]). Let T be a substitution tiling of σ and r > 0. With
f : Kr → Kr defined as above,

ΩT
∼= lim←−(Kr

f←− Kr
f←− Kr

f←− Kr
f←− Kr

f←− · · · ).

To see why the above theorem should hold, note that an element of the inverse
limit defines a tiling in a natural way: the nth approximant Kr determines
a patch of radius λnr by applying the substitution n times to the r-patch
determined by the point of Kr. This defines a continuous map from the
inverse limit into ΩT , which one may easily show is surjective. Injectivity
follows from an assumption called ‘recognisability’, which shall be discussed
in the lectures.
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Example 2.6.1. Consider a one-dimensional substitution of interval tiles.
For ε > 0 less than half the length of the tiles, points of Kε can be one of
three sorts: points corresponding to tilings whose origin is exactly ε distance
from a vertex; less than distance ε from a vertex; or further than ε from a
vertex. The points of the first sort define 0-cells of Kε, and the second two
define 1-cells called vertex-flaps and tile-cells, respectively. A vertex-flap can
be thought of as an interval of size 2ε, one for each way that two tiles can
meet at a vertex. There is a tile-cell, an interval of length l− 2ε, for each tile
of length l.

Example 2.6.2. Considering all of the above, convince yourself that for the
Fibonacci substitution Kε is a one-dimensional CW complex which has two
‘loops’ (note that we have only three two-tile patches in a Fibonacci tiling:
aa, ab, ba; a b tile cannot be followed by another). Substitution maps one
loop around the other, and the second loop maps once around both. As shall
be explained in the next session, this is enough information to compute the
Čech cohomology of the Fibonacci tilings.

Exercise 2.6.1. What complex Kε (for ε small) and map do you get for the
Thue–Morse substitution (a 7→ ab, b 7→ ba)?
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Session 3

Pattern cohomology

3.1 Čech cohomology

Čech cohomology Ȟ∗(−) is a contravariant functor from the homotopy cat-
egory of topological spaces to the category of Z-graded Abelian groups1. In
(slightly) more plain English:

1. for each topological space X and n ∈ Z we have an Abelian group
Ȟn(X);

2. each continuous map f : X → Y determines an induced map

f ∗ : Ȟ∗(Y )→ Ȟ∗(X)

(the arrow going in the ‘opposite’ direction is what makes the functor
‘contravariant’);

3. the induced map id∗ of the identity map id: X → X is the identity on
Ȟ∗(X);

4. for two continuous maps f : X → Y and g : Y → Z, we have that
f ∗ ◦ g∗ = (g ◦ f)∗;

5. for two homotopic maps f ' g we have that f ∗ = g∗.

1In fact, there is more structure here provided by a cup product, making Ȟ∗(X) a
graded ring. We won’t consider the product structure here though.
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You’ve likely met singular cohomology before, which satisfies all of the above,
and agrees with cellular cohomology on CW complexes (we shall give a loose
overview of cellular cohomology later). Unfortunately singular cohomology
is not a very useful invariant for pattern spaces: it essentially only probes one
path-component at a time (and even these probes only see something they
can’t tell apart from Rd) but what’s interesting about tiling spaces is how
the various path components are weaved together. Čech cohomology does
provide useful topological information about pattern spaces, and can be given
a very geometric description in terms of pattern-equivariant cochains.

We won’t formally define Čech cohomology. Fortunately, all we really need
to know about it are the following two facts:

1. Čech cohomology is naturally isomorphic to singular (hence cellular)
cohomology H∗(−) on the category of spaces which are CW complexes.
‘Natural’ here you can think of as meaning that not only Čech and
cellular cohomology groups ‘agree’ on CW complexes, but so do induced
maps between CW complexes.

2. For a space X with inverse limit presentation X ∼= lim←−(Γ•, f•) of com-

pact Hausdorff spaces, we have that Ȟ∗(X) ∼= lim−→(Ȟ∗(Γ•), f
∗).

Item two above says that “the Čech cohomology of an inverse limit is the
direct limit of Čech cohomology groups. Since pattern spaces are inverse limits
of CW complexes, this means that we can understand their Čech cohomology
as direct limits of cellular cohomology groups!

3.1.1 Direct limits

A direct limit diagram of Abelian groups is a diagram

(G•, f•) = G0
f0−→ G1

f1−→ G2
f2−→ G3

f3−→ G4
f4−→ · · ·

of Abelian groups Gi and homomorphisms fi : Gi → Gi+1 for all i ∈ N0.
As with our description of inverse limits, there is a generalisation to other
shapes of diagrams here that we will not need.

The direct limit of such a diagram, as a set, is∐
i∈N0

Gi/ ∼,
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the disjoint union of the groups Gi, with equivalence relation ∼ defined by
setting x ∼ y if x ∈ Gm and y ∈ Gn are eventually mapped to the same
element of some GN , that is, if fm,N(x) = fn,N(y) for some N ∈ N0, where
for i ≤ N we define fi,N := fN−1 ◦ fN−2 ◦ · · · ◦ fi. This is made into a
group using the obvious operation: [x] + [y] = [fm,N(x) + fn,N(y)] for any
N ≥ m,n. As with inverse limits, this construction is really just an explicit
way of defining a group satisfying a certain universal property with respect
to the diagram.

Exercise 3.1.1. Show that the direct limit is a well-defined Abelian group.

Example 3.1.1. Consider the diagram

(Z,×2) = Z ×2−→ Z ×2−→ Z ×2−→ Z ×2−→ · · ·

where each of the maps is given by the ×2 map x 7→ 2x. The direct limit
lim−→(Z,×2) is the group of dyadic rationals

Z[1/2] = {x/2n ∈ Q | n ∈ N0}.

with the usual operation of addition inherited from Q.

Exercise 3.1.2. Prove the above claim, that lim−→(Z,×2) ∼= Z[1/2].

Exercise 3.1.3. Show that the diagram

G→ G→ G→ G→ G→ G→ · · ·

has direct limit G if the maps are eventually isomorphisms.

3.1.2 Cellular cohomology

We shall not give the full details of the definition of cellular cohomology (see,
for example, Hatcher [13]). However, we shall give enough details in the
lectures which to demonstrate the main idea and so that computations can
be made on simple examples.

For simplicity, let us work only with finite cell complexes X; this means that
our space X is a CW complex with only finitely many cells (in particular, it
is finite dimensional). Our cells will always be assumed to carry some chosen
orientation. The degree n cellular cochains group Cn is isomorphic to Zcn ,
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where cn is the number of n-cells of X. There are coboundary maps δi (which
shall be loosely described shortly) which form a cochain complex:

0→ C0 δ0−→ C1 δ1−→ C2 δ2−→ · · · δ
n−1

−−→ Cd → 0,

where d is the top dimension of cell in X. This means that the composition of
two consecutive maps is zero: δi+1 ◦ δi = 0, that is, im(δi) ⊆ ker(δi+1). Since
everything is Abelian, we may take quotients to define the degree n cellular
cohomology group Hn(X) := ker(δi+1)/ im(δi). It turns out that these groups
do not depend, up to isomorphism, on the choice of cellular decomposition
of X.

Very briefly, here is how the coboundary maps work (again, for more details
consult a reference such as [13]). A generator of Cn ∼= Zcn should be thought
of as an indicator cochain ψc which assigns value 1 to the (oriented) cell c,
and 0 to the others. The degree (n+ 1)-cochain δn(ψc) is a linear sum

δn(ψc) :=
∑
c′�c

[c, c′] · ψc′

of indicator cochains of (n+ 1)-cells c′ with which c is incident. The integers
[c, c′] are determined by the relative orientations of c and c′. For example, in
degree zero, for a vertex v we have that δ0(ψv) is the sum of indicator cochains
of edges whose ‘head’ is v, minus those whose ‘tail’ is v. For degree one,
suppose for simplicity that each face (2-cell) f is attached to the 1-skeleton
via a homeomorphism. The orientation on f induces an orientation on its
bounding circle, which either agrees with the orientation on a given edge e,
in which case [e, f ] = 1, or is opposite to it, in which case [e, f ] = −1.

This defines δn on generators of Cn, so we extend it to all of Cn linearly, i.e.,
by setting δn(

∑
kiψc) :=

∑
ki(δ

n(ψc)).

Exercise 3.1.4. Show that any connected CW complex X has H0(X) ∼= Z.

Exercise 3.1.5. Show that the wedge of n circles X = ∨ni=1S
1 (i.e., the

union of n circles, identified at one point) has H1(X) ∼= Zn. Every finite
1d CW complex is homotopy equivalent to a wedge of some finite number
of circles, so this and the above exercise determine H∗(X) for any finite 1d
complex.
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3.2 Computing tiling cohomology

3.2.1 Substitution tilings

As we have seen, for substitution tilings one may describe the tiling space
as an inverse limit of a single map on a single complex, with all of the data
required determined by the short-range combinatorics of the patches and the
substitution map. In principle, this makes the cohomology computable. For
one-dimensional tilings, for example, one can view everything symbolically,
which is simple to feed into a computer, see the Grout program of Balchin
and Rust [2].

In higher dimensions things become complicated very quickly. Cubical sub-
stitutions are relatively easy to program, but for more general cellular substi-
tutions there is a question of how one describes the combinatorial information
to a computer. I have written a computer program which computes for any
cellular substitution, but the format of the input data is currently unman-
ageable (I hope to change this for two-dimensional substitutions at least).
The method is based on [31], providing descriptions of the cohomology in
very geometric terms as pattern-equivariant chains. These programs, even
for one-dimensional substitutions, can only return the direct limit diagram
and not compute the direct limit, which in general is an extremely difficult
algebraic problem. Sometimes (if one only wishes to know the isomorphism
type of the direct limit) one may simplify these calculations by replacing a
difficult direct limit computation with a sequence of extension problems of
easier direct limits, using stratifications of approximants [4].

3.2.2 Cut-and-project tilings

Cohomology is also often computable for tilings coming from the cut-and-
project method. One may give an inverse limit presentation of the tiling
space as inclusions of k-tori (where k is the dimension of the total space)
with larger and larger expanses of certain irrationally positioned hyperplanes
removed, determined by the various pieces of data (the hyperplanes defining
the boundary of the window in the ‘almost canonical’ polytopal window
case, and the physical space E). To keep all of this data under control
it is beneficial to take a slightly more abstract point of view, looking at a
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certain group homology of a module determined by all of this data. For those
interested, see [12].

3.3 Pattern-equivariant cohomology

It’s all very well being able to compute Ȟ∗(ΩP ), but what does it actually
mean? It’s an abstract topological invariant associated to an abstract space,
what does it have to do with our original pattern? It turns out that one
may visualise the cohomology directly ‘on’ the original pattern in terms of
pattern-equivariant cochains.

This approach was originally pioneered by Kellendonk and Putnam [20, 18]
using pattern-equivariant forms, so necessarily only applied to real-valued
cohomology. For general (constant) Abelian coefficients, we can use pattern-
equivariant cellular cochains, as observed by Sadun [26] based directly on
Gähler’s construction.

Definition 3.3.1. Let T be a cellular tiling with FLC. So T defines a cellular
decomposition of Rd; denote the nth cellular cochain group by Cn. A cochain
ψ ∈ Cn is called pattern-equivariant (PE) if there exists some r > 0 so that,
whenever the patches of tiles with radius r of two n-cells c1 and c2 agree up
to a translation of c1 to c2, then ψ(c1) = ψ(c2) (note that the orientations
of c1 and c2 are comparable via this translation). We let Cn(T ) denote the
group of PE n-cochains.

In other words, a cellular cochain is PE whenever that cochain can only ‘see’
to some finite radius: its value on any n-cell is determined completely by the
patch of tiles within some fixed radius of that cell.

Exercise 3.3.1. Show that if ψ is PE then so is its coboundary δn(ψ), where
δn is the usual degree n cellular coboundary map.

From the above exercise, we have a cochain complex

0→ C0(T )
δ0−→ C1(T )

δ1−→ C2(T )
δ2−→ · · · δ

d−1

−−→ Cd(T )→ 0

of the cellular PE cochain groups, with the usual cellular coboundary maps
between them. The corresponding cohomology H∗(T ) is called the pattern-
equivariant cohomology of T .
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Theorem 3.3.1 ([26]). For a cellular tiling T with FLC, we have a canonical
isomorphism

Ȟ∗(ΩT ) ∼= H∗(T ).

between the Čech cohomology of the pattern space of T and its PE cohomology.

The proof of the above is remarkably simple, let’s sketch it. We have isomor-
phisms

Ȟ∗(ΩT ) ∼= Ȟ∗(lim←−(Γ•, f•)) ∼= lim−→(Ȟ∗(Γ•), f
∗
• )
∼= lim−→(H∗(Γ•), f

∗
• ),

the first isomorphism coming from Gähler’s inverse limit presentation of the
tiling space, and the second two coming from properties of Čech cohomol-
ogy. This latter direct limit is a direct limit of cellular cohomologies of the
approximants Γi and the induced maps between them. The quotient map
qi : Rd → Γi is cellular, so a cellular cochain on Γi pulls back to a cellular
cochain on the tiling, which one may show is in fact PE. Moreover, every PE
cochain may be given as such a pull-back of a cellular cochain on a Γi for
sufficiently large i.

Exercise 3.3.2. Turn the above into a rigorous proof.

Example 3.3.1. We have Ȟ1(ΩT ) ∼= Z2 for the pattern space of a Fibonacci
tiling T . It turns out that one may choose as generators, in terms of PE
cohomology, cochains ψa and ψb, which assign value 1 to every a tile and
zero otherwise, and value 1 to every b tile and zero otherwise, respectively.
Every other PE cochain can be uniquely written as a Z-linear combination
of these two, up to coboundaries of PE 0-cochains.

In top dimension, we have that Ȟd(ΩP ), in terms of PE cohomology, can be
thought of as the group of ways of assigning ‘charges’ to the tiles of P , in a
way so that identical charges are given to two regions of the tiling whenever
those regions agree to some sufficiently large radius, modulo coboundaries
of PE cochains. Taking ‘modulo coboundaries of PE cochains’ essentially
means that one is freely allowed to move charges around the tiling, so long
as this is done in a way which only depends locally on what the patch of
tiles looks like to some radius. This is easily thought of dually, as PE point
charges moved around modulo PE paths. One can extend this idea to other
degrees via Poincaré duality, giving very approachable geometric descriptions
of the generators of the cohomology for certain examples, such as the Penrose
tilings, see figures 3.1 and 3.2 [31].
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Figure 3.1: PE chain representation of one generator of the degree one coho-
mology of the pattern space of Penrose tilings, following ‘Ammann bars’.
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Figure 3.2: PE chain representation of one generator of the degree one co-
homology of the pattern space of Penrose tilings, based on loops around the
dart tiles.
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3.4 Further topics

There are many interesting directions in which we could have headed at this
point, given the time. There is a natural connection between the degree
one cohomology of an FLC pattern and so-called ‘shape deformations’ of
it, see [9] (and more generally, homeomorphisms of ΩP [17]). Following the
above description of the top degree cohomology group, it is easy to define
the average of a cohomology class, which defines a group homomorphism
f : Ȟd(ΩP ) → R. More generally, in other degrees one has the so-called
Ruelle–Sullivan current (e.g. in degree one, very loosely: what is the ‘average
direction’ of a PE 1-cochain?). This is related to the trace map in K-theory,
and has various applications to the physics of quasicrystals side of the story
[19]. There is a notion of weak pattern-equivariance, which has nice appli-
cations to discrepancy problems in number theory [21]. We have not talked
much about patterns which do not have finite local complexity, such as the
pinwheel tilings, see [25]. We have also unfortunately had to neglect the rôle
of rotations throughout. But interesting rotational symmetry is the reason
that we even know about quasicrystals! One may define the pattern space in
terms of Euclidean motions of patterns, rather than just translations, which
increases the dimensions of the spaces in question. Recent work has de-
termined the cohomology of the Euclidean pattern space of Penrose tilings
[30].
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Appendix A

Tilings of infinite local
complexity

When P does not have FLC, the notion of (R, ε)-closeness given in Subsection
2.1 is likely not the right one. For example, the Conway–Radin pinwheel
tilings has just two tile types up to rigid motion, a (1, 2

√
5) triangle and its

reflection, and they meet along boundaries in only a finite number of ways up
to rigid motion. However, these triangles can be founded in infinitely many
rotational orientations in a pinwheel tiling.

So it is sensible to regard two pinwheel tilings as close if they agree to a
large radius about the origin up to a small translation and small rotation.
With the notion of (R, ε)-closeness from before this change, two otherwise
identical pinwheel tilings rotated a tiny amount relative to each other would
be counted as distant, which is clearly not quite right.

More generally, we may describe the correct closeness relation for this sort of
situation as follows: let H be the space of homeomorphisms of Rd equipped
with the compact-open topology. It is easiest to think of f1, f2 ∈ H as close
if f1(x) and f2(x) are close for any x which is in some set K containing a
large ball at the origin. So a small open neighbourhood of the identity in H
consists of homeomorphisms of H which move points at most a small amount
unless they are very far from the origin. For U an open neighbourhood of
the origin in H and K a bounded subset of Rd, we say that two patterns
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P,Q ∈ X are (U,K)-close if

H(P )[K] = H(Q)[K].

So we think of P andQ as close when they agree to a large radius (parametrised
by K) up to a small perturbation (parametrised by U).

Exercise 3.0.1. If you know about uniformities, show that the above defines
one.

Exercise 3.0.2. Show that if P has FLC, then this new definition does not
alter the pattern space ΩP .
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