A spectral sequence is defined which converges to the Čech cohomology of the Euclidean hull of a tiling of the plane with Euclidean finite local complexity. The terms of the second page are determined by the so-called Euclidean pattern-equivariant (ePE) homology and ePE cohomology groups of the tiling, and the only potentially non-trivial boundary map has a simple combinatorial description in terms of its local patches. Using this spectral sequence, we compute the Čech cohomology of the Euclidean hull of the Penrose tilings.