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Aperiodic Order ~ Periodicity

Periodicity

Periodicity is ubiquitous in mathematics. Periodic patterns:
@ can be understood globally from a compact fundamental domain;
@ are highly ordered;
@ can be classified.

The last point is of relevance to crystallographers! There are 230 space
groups of symmetries of periodic patterns of R?, which dictate the
symmetries of crystals.
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Aperiodic Order = Quasicrystals

Quasicrystals

In the 1980s, Dan Shechtman observed the following diffraction
pattern of a rapidly solidified aluminium alloy:

Whatever this substance is, it is:
@ highly ordered (sharp peaks in diffraction pattern);
@ but not a crystal! It has fivefold symmetry, forbidden by the
crystallographic restriction theorem.

Shechtman’s discovery caused a rift in opinion in the crystallography
community, and earned him the Nobel Prize in chemistry in 2011.
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Aperiodic Order = Aperiodic order

Aperiodic Order

Aperiodic order aims to study patterns which are highly ordered,
but which lack global translational symmetry (periodic patterns are
well understood!).

What does it mean for a pattern to be ordered?
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Aperiodic Order ~ Aperiodic order

Aperiodic order is, in some ways, a dual theory to fractals:

Fractals:
@ have interesting structure on the short scale;

@ often exhibit repetition in structure as one zooms in.

Aperiodically ordered tilings:
@ have interesting structure on the large scale;

@ often exhibit repetition in structure as one zooms out.

There is a class of tilings which are defined in a way so as to directly
inherit such a hierarchy:
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Substitution Tilings

Substitution Tilings

A prototile P will be a subset of R? which is the closure of its interior
(usually a polytope).

A prototile set P is a finite collection of prototiles, e.g.,
P={5[~5] ]} Atileis a translate of a prototile from P. A patch
is a finite collection of tiles whose interiors are pairwise distinct.

A substitution rule w with inflation factor A > 1 on a prototile set

P ={Py,...,P,} assigns to each prototile P; € P a patch w(P;) with
support equal to AP;, e.g.,

L
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Substitution Tilings

Given a prototile set P a tiling T is a covering of R? of tiles whose
interiors are pairwise distinct.

We say that T is admitted by the substitution rule w if, for any finite
sub-patch P of T, we have that P is a sub-patch of a translate of some
supertile w*(P;).

Under relatively weak assumptions on the substitution rule w, tilings
admitted by it exist. Moreover, for any tiling Ty admitted by w, there is
a supertiling T; for which the substitution rule takes T; to Ty, with T;
also admitted by w. This process can be repeated, so we have a
hierarchy Ty, Ty, T, . ..of admitted tilings for which w(T;) = T;_1.

Jamie Walton (Un. of York) Hierarchical tilings and their hulls 2016 Frac. Geo. & Comp. Dim. 8/17


















CARAINE,
VA A AV RIS,
DN
VAEASANSIS
S TR SIS
VNS
NSO

LTS LNAAH T
NN

N AR
Sh e



¢ i &7)"2
4] (v A W D &#'1‘7
AL AP S
MY .4»««»,«».«&y.*.v‘gw
't’#vWV“m‘!A!v“ﬁv ISR A
‘«1»“%#"1&1.&1{'»&»'&)'{;‘%4
v',xlm"ﬂatdm RN
P ATSRNA SRANTH
we%v'v'tm‘mw‘wvw«rvﬂ N
AN 4'1»1‘{%"&1*&‘#}'4
INGAYA AR RANRAANRARAKS
bkti)‘%r‘.ﬂVvAv‘K']"A'A"A. LTS
VA BGALIIS A
by 'vv“'&‘x««!‘”ﬁ'«
41»“%#'1&,#?1 LVANNEN
W#K'Ay}l‘%qb'«»"w JZ
5 '55‘1%'&‘»%!!“"1!‘4'%%
R e
A@“‘v”&qb'«»“ﬁ'ﬂr‘vﬂ’v‘
I 2SN NSNS
RN KNI D TSHELS



o

3

«F >

Ha



RGN A
kﬁ%’@!‘v{e’i&v%%ﬁ%ﬁm

< ANRAR A X
D(lb‘““ﬂm'ﬂrq41bm v
‘«%m‘"‘«»‘q SRARIARKS
LD SN AN
M‘P‘v*%h#“!ﬁm"vv‘t‘»
4"“1§‘4‘vﬂ‘uvﬂr‘¥‘4»’"
»VA]V“(@(V%«»'(;‘“""’#
v}»ﬁ»ﬂww‘vmm»'«ﬁh
m.umvgwhgvmwm
w}m»‘%«!&‘»«&‘u«»ﬁ

5 <



SN2
ST
Pt ERy,
AN
IR
4»’&.}«&&4&«
AN
'Lq p)'l By, 16'( &
VALY VAVAYAY VY,
IS AR AN KEIRA

B
i




Y )
L
ARy
NS

YNONANY
















Tiling Spaces

How do we study objects like this? One approach is via the topology,
dynamics and ergodic properties of associated moduli spaces of
tilings.

We put a geometry (usually a metric or a uniformity) on sets of tilings
which, loosely, says:

Two tilings are close if, up to a ‘small’ perturbation, those tilings agree about
the origin to a ‘large’ radius.

The translational hull or tiling space Q) of a tiling T of R is defined as
Q:=T+ R4,

where T + RY is the translational orbit of T, the collection of tilings given
by translations of T.
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Tiling Spaces

For nice T (of ‘finite local complexity’), () is a compact space whose
points may be identified with those tilings whose finite patches are
translates of the finite patches of T. So () is the moduli space of locally
indistinguishable tilings.

For non-periodic T, this space has complicated topology:
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Tiling Spaces

Anderson and Putnam showed that the hull of a substitution tiling
may be given as an inverse limit

a=lmrdrdrd ...
The space I' is a finite CW complex determined by the short-range
combinatorics of the patches which appear in the tilings, and the map
f is determined by the action of substitution.

This makes important topological invariants of (2 computable! A
commonly studied one is the Cech cohomology H*(Q).

These cohomology groups have an elegant description, but they are
also of principle importance to the structure of tilings.
Pattern-equivariant descriptions of these groups give digestible and
geometric representations of these groups
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Tiling Spaces

Thank you!
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Tiling Spaces

Picture Credits

@ Quasicrystal diffraction image (slide 3) from wikepedia:
https://en.wikipedia.org/wiki/Quasicrystal

@ Penrose rhomb tiling, and wonderful idea of use of Gary Larson’s
The Far Side comic to explain notion of repetitivity (slide 6) from
the Tilings Encyclopedia:
http://tilings.math.uni-bielefeld.de/

e Tiling space (it’s actually a solenoid!) image (slide 12) from
wikepedia:
https://en.wikipedia.org/wiki/Solenoid_(mathematics)

o All other images created by author on Inkscape.
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