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In Aperiodic Order we are typically interested in long-range
features, rather than local, more cosmetic choices.

Indeed, one often interchangeably considers patterns which are
mutually locally derivable (MLD).

In particular we may interchange:

Tilings = Point Patterns

where, roughly,
— = Marking control points of tiles
— = Voronoi tessellation












Delone Sets

Definition (Delone set)

A C R? is a Delone set if there exist r, R > 0 so that

#{B,(x)NA} <1, #{Bgr(z)NA} >1 forall z € R%

i.e., A is ‘uniformly discrete’ and ‘relatively dense’.

Many definitions to follow given just for Delone sets but work
analogously for tilings.
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identify r-patches P,(x) and P.(y) if P-(z) — z = P-(y) — .

Definition (Complexity function)

Let p: R>p — NU {oo} be the complexity function:
p(r) := number of r-patches.

A has FLC (finite local complexity) if p(r) < oo for all 7.

Definition (Repetitivity function)

For A FLC, let p: R>p — R>¢ U {oc0} be the repetitivity function:
p(r) = inf{R € R>( | all r-patches appear in all R-patches}.

A is repetitive if p(r) < oo for all r.
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Definition (Linear repetitivity)

A is linearly repetitive if there exists some C' > 0 so that
p(r) < Crforallr>1ie., p(r) <r.

Linear repetitivity forces the following:

Definition (Low complexity)

We say that A has low complexity if there exists some C' > 0 so
that p(r) < Cr? for all 7 > 1 i.e., p(r) < ro.
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Data of the cut and project scheme:

» The total space E

» The physical space E, < E

» The internal space E. < E

» The window W C E_

> The lattice ' < E
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E =Ey + E., W compact with non-empty interior (today: a
convex polygon).
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denote z = my(x) etc.



Data of the cut and project scheme:

» The total space E

» The physical space E, < E

» The internal space E. < E

» The window W C E_

> The lattice ' < E
where E = R*, dim(Ey) =d > 0, dim(E<) =n =k —d > 0,
E =Ey + E., W compact with non-empty interior (today: a
convex polygon).

We have the projections my: E — Ey and n: E - E.. We
denote z = my(x) etc.

We make the following standard assumptions:
1. my is injective on T’
2. m< is injective on I

3. I'c isdense in E.



We have the star map x: I'y — E. defined by
v ot = (2)<
where z” is the unique element of T with (z")y = .
The cut and project set is then:
A={zely|z"eW}CEy

i.e., projections of lattice points to the physical space which project
to the window in the internal space.



A cut and project scheme defines an infinite family of Delone sets,
by translating the lattice, cutting with the ‘strip’ S = W + E,,,
then projecting to the physical space.

We only consider regular cut and project sets where the
(translated) lattice doesn't intersect OS (equivalently, don't project
to OW), as well as ‘limits’ of the regular patterns at the
non-regular lattice translates. Then:

1. these Delone sets are all locally indistinguishable from each
other (they all have the same finite patches)

2. they're all non-periodic but repetitive
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Some fundamental questions:

‘ substitution ‘ c&p
low complexity: v A
LR: v B
pure point diffraction: C v

v'= yes, given ‘standard restrictions’

A: Henna's talk! We can answer for all polytopal windows:
complexity exponent can be calculated from ranks of intersection
of supporting hyperplanes with '~

B: In 5 minutes! (for polytopal windows)

C': depends, and is hard. In 1d we have the ‘Pisot Conjecture’
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sets
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where % is a finite (and irredundant) set of closed half-spaces in
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Complexity and repetitivity of polytopal cut and project
sets

We will assume that W is a convex polytope, so

w= (] H,
Htesx#t+

where % is a finite (and irredundant) set of closed half-spaces in
E.. Associated set of (affine) hyperplanes is denoted 7.

Definition (Weakly homogeneous schemes)

The c&p scheme is called weakly homogeneous if there is some
‘origin’ 0 € E. so that, for each H € 57, there is some v € I and
n € N with

o€ H+ %
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For a polytopal cut and project scheme, the growth rate of p(r) is

determined by the pair
(%’ I‘<)7

where 7 = {H — H | H € s} = the set of codim 1 subspaces
of [E. parallel to the supporting hyperplanes of the window.
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(A%, T <) if the scheme is weakly homogeneous.



For a polytopal cut and project scheme, the growth rate of p(r) is
determined by the pair
(‘%’ F<)a

where 7 = {H — H | H € s} = the set of codim 1 subspaces
of E. parallel to the supporting hyperplanes of the window.

Whether the patterns are LR or not is also determined by
(A%, T <) if the scheme is weakly homogeneous.

Definition (Hyperplane Stabilisers)

For H € 74 let
M ={yeT |y< € H}.

Definition (Flags)

A subset f of exactly n = dim(E.) elements in 77 is called a flag
if Npey H ={0}. Let F denote the set of all flags.



Theorem (Julien 2010, Koivusalo-W 2021)

The complexity function satisfies p(r) < r®* where

- = " (d—rk(TH = dim (T%), .
! Ecnez??(af, ay Hzef( rk(I'")+Bg), and By = dim ( <>R

In short: the number of patches of size r grows polynomially in r,
with power o € N determined by the ranks of the stabilisers '/
and the dimensions of subspaces they span in E_.



Definition (Diophantine c & p scheme)

Call the scheme Diophantine if there exists some ¢ > 0 so that,
for all non-zero v € T,
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l<ll = ¢ 171178, where 5 = =

(recall: d = dim(Ey ), n = dim(E-)).

The Diophantine condition depends only on I' in E, up to linear
isomorphism.
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Call the scheme Diophantine if there exists some ¢ > 0 so that,
for all non-zero v € T,

_ d
l<ll = ¢ 171178, where 5 = =

(recall: d = dim(Ey ), n = dim(E-)).
The Diophantine condition depends only on I' in E, up to linear

isomorphism.

Example

For d =n =1, up to linear isomorphism,
(F<,E<) = (Z + O[Z,R),

for «v irrational. The scheme is Diophantine <= « is badly
approximable <= continued fraction expansion of « has
bounded entries.
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Theorem (Koivusalo-W 2022)

For an indecomposable and weakly homogeneous polytopal cut and
project scheme, TFAE:

» CandD
» LR

Notes:

1. C and D determined just by the pair (J4,T<)

2. ‘indecomposable’ means the window isn't a product of lower
dimensional polytopal windows (a ‘prism’). May be dropped
by checking condition for a ‘factorisation’

3. theorem fails if ‘weakly homogeneous’ is dropped (but weakly
homogeneous isn't necessary for LR)

4. ‘convex polytopal' can be weakened to ‘polytopal’ (don't even
need W connected) [Koivusalo-W, in preparation]

Class covered includes: canonical cut and project sets, Sturmian
sequences, Ammann—Beenker tilings, Penrose tilings*, ‘cubical
windows’, generalising [Haynes—Koivusalo-W 2018]
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Overview of proof

Both main results come down to consideration of acceptance
domains of patches: how many there are, and what size they are.

l.ze A < z*ecW
2. z4+z2€AN = F+zrreW << z*e W —-z*
3.24y¢ AN = 4y ¢W < zZ*eW°—y*

x, y are projections of lattices points a, b € I'. They have
relevance to the r-patches only if:

L lavll, fov]l <
2. ac, beeW —W.

Acceptance domains of r-patches determined as corresponding
intersection of W — z* and W€ — y* over such lattice points
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1. It's easier to count cut regions defined by cutting W with '
translates of full hyperplanes. Show these cut < same number of
regions. These can be counted instead by those ‘vertices’ V¢ (for
flags f, of hyperplanes intersecting to points) inside the window.

2. So fewer patches <> fewer hyperplane cuts <+ larger ranks of
I'H (translates of H in T'" are equal) ~» complexity formula.

3. Vy is a group for each flag f. It turns out:
C < TI'c < Vyis finite index for each f € 7

4. Thus, if D also holds, vertices stay ‘far apart’ ~~ large
acceptance domains.

5. Moreover, D = r-balls of I" project to E. without large gaps
(‘transference’). So don't need to travel far from any point of A to
hit each acceptance domain, since each is ‘large’ ~~ LR.
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Converse direction is easier: if C or D fail then we can construct
acceptance domains of ‘small volume' <+ patches with ‘low
frequency’, so LR doesn’t hold.

Lots of small miracles and technical details needed for tidy final
result:

» C <= TI'c <V finite index. Lots of work needed to show
we don't need quasi- (or almost-) canonical window, using
generalised complexity result, and showing C —
‘hyperplane spanning’.

> Above is exactly what is needed to approximate vertices of cut
regions instead by elements of I'. The latter has more
structure and we can define the Diophantine condition for it.

» For high repetitivity, we need not just large acceptance
domains but also well-distribution of I'«. Fortunately the
Diophantine condition gives both!

» One also has to develop a theory of factors of schemes to deal
with the case of decomposable windows.
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» Complexity / repetitivity for fractal windows?
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» Relationship to quick convergence of patch frequencies /
‘sharpness’ of diffraction pattern?

Thanks for listening!



