
Characterising linear repetitivity for
polytopal cut and project sets

Jamie Walton
University of Nottingham

Aperiodic Tilings: A Meeting and Mathematical Art Exhibition
in Honour of Uwe Grimm at The Open University

29th June 2022



Tilings ⇌ Point Patterns

In Aperiodic Order we are typically interested in long-range
features, rather than local, more cosmetic choices.

Indeed, one often interchangeably considers patterns which are
mutually locally derivable (MLD).

In particular we may interchange:

Tilings ⇌ Point Patterns

where, roughly,
⇀ = Marking control points of tiles
↽ = Voronoi tessellation



Tilings ⇌ Point Patterns

In Aperiodic Order we are typically interested in long-range
features, rather than local, more cosmetic choices.

Indeed, one often interchangeably considers patterns which are
mutually locally derivable (MLD).

In particular we may interchange:

Tilings ⇌ Point Patterns

where, roughly,
⇀ = Marking control points of tiles
↽ = Voronoi tessellation









Delone Sets

Definition (Delone set)

Λ ⊂ Rd is a Delone set if there exist r, R > 0 so that

#{Br(x) ∩ Λ} ≤ 1, #{BR(x) ∩ Λ} ≥ 1 for all x ∈ Rd.

i.e., Λ is ‘uniformly discrete’ and ‘relatively dense’.

Many definitions to follow given just for Delone sets but work
analogously for tilings.



Complexity and repetitivity

Definition (r-patches)

For x ∈ Λ and r ≥ 0, we call Pr(x) := Br(x) ∩ Λ an r-patch. We
identify r-patches Pr(x) and Pr(y) if Pr(x)− x = Pr(y)− y.

Definition (Complexity function)

Let p : R≥0 → N ∪ {∞} be the complexity function:

p(r) := number of r-patches.

Λ has FLC (finite local complexity) if p(r) < ∞ for all r.

Definition (Repetitivity function)

For Λ FLC, let ρ : R≥0 → R≥0 ∪ {∞} be the repetitivity function:

ρ(r) = inf{R ∈ R≥0 | all r-patches appear in all R-patches}.

Λ is repetitive if ρ(r) < ∞ for all r.



Complexity and repetitivity

Definition (r-patches)

For x ∈ Λ and r ≥ 0, we call Pr(x) := Br(x) ∩ Λ an r-patch. We
identify r-patches Pr(x) and Pr(y) if Pr(x)− x = Pr(y)− y.

Definition (Complexity function)

Let p : R≥0 → N ∪ {∞} be the complexity function:

p(r) := number of r-patches.

Λ has FLC (finite local complexity) if p(r) < ∞ for all r.

Definition (Repetitivity function)

For Λ FLC, let ρ : R≥0 → R≥0 ∪ {∞} be the repetitivity function:

ρ(r) = inf{R ∈ R≥0 | all r-patches appear in all R-patches}.

Λ is repetitive if ρ(r) < ∞ for all r.



Complexity and repetitivity

Definition (r-patches)

For x ∈ Λ and r ≥ 0, we call Pr(x) := Br(x) ∩ Λ an r-patch. We
identify r-patches Pr(x) and Pr(y) if Pr(x)− x = Pr(y)− y.

Definition (Complexity function)

Let p : R≥0 → N ∪ {∞} be the complexity function:

p(r) := number of r-patches.

Λ has FLC (finite local complexity) if p(r) < ∞ for all r.

Definition (Repetitivity function)

For Λ FLC, let ρ : R≥0 → R≥0 ∪ {∞} be the repetitivity function:

ρ(r) = inf{R ∈ R≥0 | all r-patches appear in all R-patches}.

Λ is repetitive if ρ(r) < ∞ for all r.



Linear repetitivity

So Λ is repetitive if every finite patch which appears somewhere in
fact appears within a bounded distance of anywhere.

Linear repetitivity was proposed by Lagarias and Pleasants as a
notion of “perfectly ordered quasicrystals”. LR is the most
repetitive a non-periodic pattern can be, and forces further
properties.

Definition (Linear repetitivity)

Λ is linearly repetitive if there exists some C > 0 so that
ρ(r) ≤ Cr for all r ≥ 1 i.e., ρ(r) ≪ r.

Linear repetitivity forces the following:

Definition (Low complexity)

We say that Λ has low complexity if there exists some C > 0 so
that p(r) ≤ Crd for all r ≥ 1 i.e., p(r) ≪ rd.



Linear repetitivity

So Λ is repetitive if every finite patch which appears somewhere in
fact appears within a bounded distance of anywhere.

Linear repetitivity was proposed by Lagarias and Pleasants as a
notion of “perfectly ordered quasicrystals”. LR is the most
repetitive a non-periodic pattern can be, and forces further
properties.

Definition (Linear repetitivity)

Λ is linearly repetitive if there exists some C > 0 so that
ρ(r) ≤ Cr for all r ≥ 1 i.e., ρ(r) ≪ r.

Linear repetitivity forces the following:

Definition (Low complexity)

We say that Λ has low complexity if there exists some C > 0 so
that p(r) ≤ Crd for all r ≥ 1 i.e., p(r) ≪ rd.



Linear repetitivity

So Λ is repetitive if every finite patch which appears somewhere in
fact appears within a bounded distance of anywhere.

Linear repetitivity was proposed by Lagarias and Pleasants as a
notion of “perfectly ordered quasicrystals”. LR is the most
repetitive a non-periodic pattern can be, and forces further
properties.

Definition (Linear repetitivity)

Λ is linearly repetitive if there exists some C > 0 so that
ρ(r) ≤ Cr for all r ≥ 1 i.e., ρ(r) ≪ r.

Linear repetitivity forces the following:

Definition (Low complexity)

We say that Λ has low complexity if there exists some C > 0 so
that p(r) ≤ Crd for all r ≥ 1 i.e., p(r) ≪ rd.



Cut and project sets. Step 1:



Cut and project sets. Step 1:



Cut and project sets

E<

E∨

Γ

Λ

W

E



Data of the cut and project scheme:

▶ The total space E
▶ The physical space E∨ < E
▶ The internal space E< < E
▶ The window W ⊂ E<

▶ The lattice Γ < E
where E ∼= Rk, dim(E∨) = d > 0, dim(E<) = n = k − d > 0,
E = E∨ + E<, W compact with non-empty interior (today: a
convex polygon).

We have the projections π∨ : E → E∨ and π< : E → E<. We
denote x∨ := π∨(x) etc.

We make the following standard assumptions:

1. π∨ is injective on Γ

2. π< is injective on Γ

3. Γ< is dense in E<



Data of the cut and project scheme:

▶ The total space E
▶ The physical space E∨ < E
▶ The internal space E< < E
▶ The window W ⊂ E<

▶ The lattice Γ < E
where E ∼= Rk, dim(E∨) = d > 0, dim(E<) = n = k − d > 0,
E = E∨ + E<, W compact with non-empty interior (today: a
convex polygon).

We have the projections π∨ : E → E∨ and π< : E → E<. We
denote x∨ := π∨(x) etc.

We make the following standard assumptions:

1. π∨ is injective on Γ

2. π< is injective on Γ

3. Γ< is dense in E<



We have the star map ∗ : Γ∨ → E< defined by

x 7→ x∗ := (x∧)<

where x∧ is the unique element of Γ with (x∧)∨ = x.

The cut and project set is then:

Λ := {x ∈ Γ∨ | x∗ ∈ W} ⊂ E∨

i.e., projections of lattice points to the physical space which project
to the window in the internal space.



A cut and project scheme defines an infinite family of Delone sets,
by translating the lattice, cutting with the ‘strip’ S = W + E∨,
then projecting to the physical space.

We only consider regular cut and project sets where the
(translated) lattice doesn’t intersect ∂S (equivalently, don’t project
to ∂W ), as well as ‘limits’ of the regular patterns at the
non-regular lattice translates. Then:

1. these Delone sets are all locally indistinguishable from each
other (they all have the same finite patches)

2. they’re all non-periodic but repetitive



Some fundamental questions:

substitution c & p

low complexity:

✓ A

LR:

✓ B

pure point diffraction:

C ✓

✓= yes, given ‘standard restrictions’

A: Henna’s talk! We can answer for all polytopal windows:
complexity exponent can be calculated from ranks of intersection
of supporting hyperplanes with Γ<

B: In 5 minutes! (for polytopal windows)

C: depends, and is hard. In 1d we have the ‘Pisot Conjecture’



Some fundamental questions:

substitution c & p

low complexity: ✓

A

LR: ✓

B

pure point diffraction:

C

✓

✓= yes, given ‘standard restrictions’

A: Henna’s talk! We can answer for all polytopal windows:
complexity exponent can be calculated from ranks of intersection
of supporting hyperplanes with Γ<

B: In 5 minutes! (for polytopal windows)

C: depends, and is hard. In 1d we have the ‘Pisot Conjecture’



Some fundamental questions:

substitution c & p

low complexity: ✓ A
LR: ✓

B

pure point diffraction:

C

✓

✓= yes, given ‘standard restrictions’

A: Henna’s talk! We can answer for all polytopal windows:
complexity exponent can be calculated from ranks of intersection
of supporting hyperplanes with Γ<

B: In 5 minutes! (for polytopal windows)

C: depends, and is hard. In 1d we have the ‘Pisot Conjecture’



Some fundamental questions:

substitution c & p

low complexity: ✓ A
LR: ✓ B

pure point diffraction:

C

✓

✓= yes, given ‘standard restrictions’

A: Henna’s talk! We can answer for all polytopal windows:
complexity exponent can be calculated from ranks of intersection
of supporting hyperplanes with Γ<

B: In 5 minutes! (for polytopal windows)

C: depends, and is hard. In 1d we have the ‘Pisot Conjecture’



Some fundamental questions:

substitution c & p

low complexity: ✓ A
LR: ✓ B

pure point diffraction: C ✓

✓= yes, given ‘standard restrictions’

A: Henna’s talk! We can answer for all polytopal windows:
complexity exponent can be calculated from ranks of intersection
of supporting hyperplanes with Γ<

B: In 5 minutes! (for polytopal windows)

C: depends, and is hard. In 1d we have the ‘Pisot Conjecture’



Complexity and repetitivity of polytopal cut and project
sets

We will assume that W is a convex polytope, so

W =
⋂

H+∈H +

H+,

where H + is a finite (and irredundant) set of closed half-spaces in
E<. Associated set of (affine) hyperplanes is denoted H .

Definition (Weakly homogeneous schemes)

The c&p scheme is called weakly homogeneous if there is some
‘origin’ o ∈ E< so that, for each H ∈ H , there is some γ ∈ Γ and
n ∈ N with

o ∈ H +
γ<
n
.



Complexity and repetitivity of polytopal cut and project
sets

We will assume that W is a convex polytope, so

W =
⋂

H+∈H +

H+,

where H + is a finite (and irredundant) set of closed half-spaces in
E<. Associated set of (affine) hyperplanes is denoted H .

Definition (Weakly homogeneous schemes)

The c&p scheme is called weakly homogeneous if there is some
‘origin’ o ∈ E< so that, for each H ∈ H , there is some γ ∈ Γ and
n ∈ N with

o ∈ H +
γ<
n
.



Example: Ammann–Beenker

W



Example: Ammann–Beenker

H



Example: Ammann–Beenker

H0



Example: Ammann–Beenker

Γ<



For a polytopal cut and project scheme, the growth rate of p(r) is
determined by the pair

(H0,Γ<),

where H0 = {H −H | H ∈ H } = the set of codim 1 subspaces
of E< parallel to the supporting hyperplanes of the window.

Whether the patterns are LR or not is also determined by
(H0,Γ<) if the scheme is weakly homogeneous.

Definition (Hyperplane Stabilisers)

For H ∈ H0 let
ΓH = {γ ∈ Γ | γ< ∈ H}.

Definition (Flags)

A subset f of exactly n = dim(E<) elements in H0 is called a flag
if
⋂

H∈f H = {0}. Let F denote the set of all flags.



For a polytopal cut and project scheme, the growth rate of p(r) is
determined by the pair

(H0,Γ<),

where H0 = {H −H | H ∈ H } = the set of codim 1 subspaces
of E< parallel to the supporting hyperplanes of the window.

Whether the patterns are LR or not is also determined by
(H0,Γ<) if the scheme is weakly homogeneous.

Definition (Hyperplane Stabilisers)

For H ∈ H0 let
ΓH = {γ ∈ Γ | γ< ∈ H}.

Definition (Flags)

A subset f of exactly n = dim(E<) elements in H0 is called a flag
if
⋂

H∈f H = {0}. Let F denote the set of all flags.



Theorem (Julien 2010, Koivusalo–W 2021)

The complexity function satisfies p(r) ≍ rα where

α := max
f∈F

αf , αf :=
∑
H∈f

(d−rk(ΓH)+βH), and βH = dim
〈
ΓH
<

〉
R .

In short: the number of patches of size r grows polynomially in r,
with power α ∈ N determined by the ranks of the stabilisers ΓH

and the dimensions of subspaces they span in E<.



Definition (Diophantine c & p scheme)

Call the scheme Diophantine if there exists some c > 0 so that,
for all non-zero γ ∈ Γ,

∥γ<∥ ≥ c · ∥γ∥−δ, where δ =
d

n

(recall: d = dim(E∨), n = dim(E<)).

The Diophantine condition depends only on Γ< in E<, up to linear
isomorphism.

Example

For d = n = 1, up to linear isomorphism,

(Γ<,E<) ∼= (Z+ αZ,R),

for α irrational. The scheme is Diophantine ⇐⇒ α is badly
approximable ⇐⇒ continued fraction expansion of α has
bounded entries.



Definition (Diophantine c & p scheme)

Call the scheme Diophantine if there exists some c > 0 so that,
for all non-zero γ ∈ Γ,

∥γ<∥ ≥ c · ∥γ∥−δ, where δ =
d

n

(recall: d = dim(E∨), n = dim(E<)).

The Diophantine condition depends only on Γ< in E<, up to linear
isomorphism.

Example

For d = n = 1, up to linear isomorphism,

(Γ<,E<) ∼= (Z+ αZ,R),

for α irrational. The scheme is Diophantine ⇐⇒ α is badly
approximable ⇐⇒ continued fraction expansion of α has
bounded entries.



We denote:

C = Low complexity
i.e., p(r) ≪ rd for one (equivalently any) c & p set generated by
the scheme

D = The scheme is Diophantine

LR = Linear repetitivity
i.e., ρ(r) ≪ r for one (equivalently any) c & p set generated by
the scheme

Theorem (Koivusalo–W 2022)

For an indecomposable and weakly homogeneous polytopal cut and
project scheme, TFAE:

▶ C and D

▶ LR



We denote:

C = Low complexity
i.e., p(r) ≪ rd for one (equivalently any) c & p set generated by
the scheme

D = The scheme is Diophantine

LR = Linear repetitivity
i.e., ρ(r) ≪ r for one (equivalently any) c & p set generated by
the scheme

Theorem (Koivusalo–W 2022)

For an indecomposable and weakly homogeneous polytopal cut and
project scheme, TFAE:

▶ C and D

▶ LR



Theorem (Koivusalo–W 2022)

For an indecomposable and weakly homogeneous polytopal cut and
project scheme, TFAE:

▶ C and D

▶ LR

Notes:

1. C and D determined just by the pair (H0,Γ<)

2. ‘indecomposable’ means the window isn’t a product of lower
dimensional polytopal windows (a ‘prism’). May be dropped
by checking condition for a ‘factorisation’

3. theorem fails if ‘weakly homogeneous’ is dropped (but weakly
homogeneous isn’t necessary for LR)

4. ‘convex polytopal’ can be weakened to ‘polytopal’ (don’t even
need W connected) [Koivusalo–W, in preparation]

Class covered includes: canonical cut and project sets, Sturmian
sequences, Ammann–Beenker tilings, Penrose tilings*, ‘cubical
windows’, generalising [Haynes–Koivusalo–W 2018]



Theorem (Koivusalo–W 2022)

For an indecomposable and weakly homogeneous polytopal cut and
project scheme, TFAE:

▶ C and D

▶ LR

Notes:

1. C and D determined just by the pair (H0,Γ<)

2. ‘indecomposable’ means the window isn’t a product of lower
dimensional polytopal windows (a ‘prism’). May be dropped
by checking condition for a ‘factorisation’

3. theorem fails if ‘weakly homogeneous’ is dropped (but weakly
homogeneous isn’t necessary for LR)

4. ‘convex polytopal’ can be weakened to ‘polytopal’ (don’t even
need W connected) [Koivusalo–W, in preparation]

Class covered includes: canonical cut and project sets, Sturmian
sequences, Ammann–Beenker tilings, Penrose tilings*, ‘cubical
windows’, generalising [Haynes–Koivusalo–W 2018]



Example: Ammann–Beenker

Γ<



Overview of proof

Both main results come down to consideration of acceptance
domains of patches: how many there are, and what size they are.

1. z ∈ Λ ⇐⇒ z∗ ∈ W

2. z + x ∈ Λ ⇐⇒ z∗ + x∗ ∈ W ⇐⇒ z∗ ∈ W − x∗

3. z + y /∈ Λ ⇐⇒ z∗ + y∗ /∈ W ⇐⇒ z∗ ∈ W c − y∗

x, y are projections of lattices points a, b ∈ Γ. They have
relevance to the r-patches only if:

1. ∥a∨∥, ∥b∨∥ ≤ r

2. a<, b< ∈ W −W .

Acceptance domains of r-patches determined as corresponding
intersection of W − x∗ and W c − y∗ over such lattice points



Overview of proof

Both main results come down to consideration of acceptance
domains of patches: how many there are, and what size they are.

1. z ∈ Λ ⇐⇒ z∗ ∈ W

2. z + x ∈ Λ ⇐⇒ z∗ + x∗ ∈ W ⇐⇒ z∗ ∈ W − x∗

3. z + y /∈ Λ ⇐⇒ z∗ + y∗ /∈ W ⇐⇒ z∗ ∈ W c − y∗

x, y are projections of lattices points a, b ∈ Γ. They have
relevance to the r-patches only if:

1. ∥a∨∥, ∥b∨∥ ≤ r

2. a<, b< ∈ W −W .

Acceptance domains of r-patches determined as corresponding
intersection of W − x∗ and W c − y∗ over such lattice points



Overview of proof

Both main results come down to consideration of acceptance
domains of patches: how many there are, and what size they are.

1. z ∈ Λ ⇐⇒ z∗ ∈ W

2. z + x ∈ Λ ⇐⇒ z∗ + x∗ ∈ W ⇐⇒ z∗ ∈ W − x∗

3. z + y /∈ Λ ⇐⇒ z∗ + y∗ /∈ W ⇐⇒ z∗ ∈ W c − y∗

x, y are projections of lattices points a, b ∈ Γ. They have
relevance to the r-patches only if:

1. ∥a∨∥, ∥b∨∥ ≤ r

2. a<, b< ∈ W −W .

Acceptance domains of r-patches determined as corresponding
intersection of W − x∗ and W c − y∗ over such lattice points



W

E∨
z



W

E∨

z∧



E∨

z∗



x

x∧
x∗



W − x∗



y

y∗



y

W c − y∗









Overview of proof
1. It’s easier to count cut regions defined by cutting W with Γ<

translates of full hyperplanes. Show these cut ≍ same number of
regions. These can be counted instead by those ‘vertices’ Vf (for
flags f , of hyperplanes intersecting to points) inside the window.

2. So fewer patches ↔ fewer hyperplane cuts ↔ larger ranks of
ΓH (translates of H in ΓH are equal) ⇝ complexity formula.

3. Vf is a group for each flag f . It turns out:
C ⇐⇒ Γ< ⩽ Vf is finite index for each f ∈ F

4. Thus, if D also holds, vertices stay ‘far apart’ ⇝ large
acceptance domains.

5. Moreover, D =⇒ r-balls of Γ project to E< without large gaps
(‘transference’). So don’t need to travel far from any point of Λ to
hit each acceptance domain, since each is ‘large’ ⇝ LR.



Overview of proof
1. It’s easier to count cut regions defined by cutting W with Γ<

translates of full hyperplanes. Show these cut ≍ same number of
regions. These can be counted instead by those ‘vertices’ Vf (for
flags f , of hyperplanes intersecting to points) inside the window.

2. So fewer patches ↔ fewer hyperplane cuts ↔ larger ranks of
ΓH (translates of H in ΓH are equal) ⇝ complexity formula.

3. Vf is a group for each flag f . It turns out:
C ⇐⇒ Γ< ⩽ Vf is finite index for each f ∈ F

4. Thus, if D also holds, vertices stay ‘far apart’ ⇝ large
acceptance domains.

5. Moreover, D =⇒ r-balls of Γ project to E< without large gaps
(‘transference’). So don’t need to travel far from any point of Λ to
hit each acceptance domain, since each is ‘large’ ⇝ LR.



Overview of proof
1. It’s easier to count cut regions defined by cutting W with Γ<

translates of full hyperplanes. Show these cut ≍ same number of
regions. These can be counted instead by those ‘vertices’ Vf (for
flags f , of hyperplanes intersecting to points) inside the window.

2. So fewer patches ↔ fewer hyperplane cuts ↔ larger ranks of
ΓH (translates of H in ΓH are equal) ⇝ complexity formula.

3. Vf is a group for each flag f . It turns out:
C ⇐⇒ Γ< ⩽ Vf is finite index for each f ∈ F

4. Thus, if D also holds, vertices stay ‘far apart’ ⇝ large
acceptance domains.

5. Moreover, D =⇒ r-balls of Γ project to E< without large gaps
(‘transference’). So don’t need to travel far from any point of Λ to
hit each acceptance domain, since each is ‘large’ ⇝ LR.



Overview of proof
1. It’s easier to count cut regions defined by cutting W with Γ<

translates of full hyperplanes. Show these cut ≍ same number of
regions. These can be counted instead by those ‘vertices’ Vf (for
flags f , of hyperplanes intersecting to points) inside the window.

2. So fewer patches ↔ fewer hyperplane cuts ↔ larger ranks of
ΓH (translates of H in ΓH are equal) ⇝ complexity formula.

3. Vf is a group for each flag f . It turns out:
C ⇐⇒ Γ< ⩽ Vf is finite index for each f ∈ F

4. Thus, if D also holds, vertices stay ‘far apart’ ⇝ large
acceptance domains.

5. Moreover, D =⇒ r-balls of Γ project to E< without large gaps
(‘transference’). So don’t need to travel far from any point of Λ to
hit each acceptance domain, since each is ‘large’ ⇝ LR.



Overview of proof
1. It’s easier to count cut regions defined by cutting W with Γ<

translates of full hyperplanes. Show these cut ≍ same number of
regions. These can be counted instead by those ‘vertices’ Vf (for
flags f , of hyperplanes intersecting to points) inside the window.

2. So fewer patches ↔ fewer hyperplane cuts ↔ larger ranks of
ΓH (translates of H in ΓH are equal) ⇝ complexity formula.

3. Vf is a group for each flag f . It turns out:
C ⇐⇒ Γ< ⩽ Vf is finite index for each f ∈ F

4. Thus, if D also holds, vertices stay ‘far apart’ ⇝ large
acceptance domains.

5. Moreover, D =⇒ r-balls of Γ project to E< without large gaps
(‘transference’). So don’t need to travel far from any point of Λ to
hit each acceptance domain, since each is ‘large’ ⇝ LR.



Converse direction is easier: if C or D fail then we can construct
acceptance domains of ‘small volume’ ↔ patches with ‘low
frequency’, so LR doesn’t hold.

Lots of small miracles and technical details needed for tidy final
result:

▶ C ⇐⇒ Γ< ⩽ Vf finite index. Lots of work needed to show
we don’t need quasi- (or almost-) canonical window, using
generalised complexity result, and showing C =⇒
‘hyperplane spanning’.

▶ Above is exactly what is needed to approximate vertices of cut
regions instead by elements of Γ<. The latter has more
structure and we can define the Diophantine condition for it.

▶ For high repetitivity, we need not just large acceptance
domains but also well-distribution of Γ<. Fortunately the
Diophantine condition gives both!

▶ One also has to develop a theory of factors of schemes to deal
with the case of decomposable windows.



Converse direction is easier: if C or D fail then we can construct
acceptance domains of ‘small volume’ ↔ patches with ‘low
frequency’, so LR doesn’t hold.

Lots of small miracles and technical details needed for tidy final
result:

▶ C ⇐⇒ Γ< ⩽ Vf finite index. Lots of work needed to show
we don’t need quasi- (or almost-) canonical window, using
generalised complexity result, and showing C =⇒
‘hyperplane spanning’.

▶ Above is exactly what is needed to approximate vertices of cut
regions instead by elements of Γ<. The latter has more
structure and we can define the Diophantine condition for it.

▶ For high repetitivity, we need not just large acceptance
domains but also well-distribution of Γ<. Fortunately the
Diophantine condition gives both!

▶ One also has to develop a theory of factors of schemes to deal
with the case of decomposable windows.



Converse direction is easier: if C or D fail then we can construct
acceptance domains of ‘small volume’ ↔ patches with ‘low
frequency’, so LR doesn’t hold.

Lots of small miracles and technical details needed for tidy final
result:

▶ C ⇐⇒ Γ< ⩽ Vf finite index. Lots of work needed to show
we don’t need quasi- (or almost-) canonical window, using
generalised complexity result, and showing C =⇒
‘hyperplane spanning’.

▶ Above is exactly what is needed to approximate vertices of cut
regions instead by elements of Γ<. The latter has more
structure and we can define the Diophantine condition for it.

▶ For high repetitivity, we need not just large acceptance
domains but also well-distribution of Γ<. Fortunately the
Diophantine condition gives both!

▶ One also has to develop a theory of factors of schemes to deal
with the case of decomposable windows.



Converse direction is easier: if C or D fail then we can construct
acceptance domains of ‘small volume’ ↔ patches with ‘low
frequency’, so LR doesn’t hold.

Lots of small miracles and technical details needed for tidy final
result:

▶ C ⇐⇒ Γ< ⩽ Vf finite index. Lots of work needed to show
we don’t need quasi- (or almost-) canonical window, using
generalised complexity result, and showing C =⇒
‘hyperplane spanning’.

▶ Above is exactly what is needed to approximate vertices of cut
regions instead by elements of Γ<. The latter has more
structure and we can define the Diophantine condition for it.

▶ For high repetitivity, we need not just large acceptance
domains but also well-distribution of Γ<. Fortunately the
Diophantine condition gives both!

▶ One also has to develop a theory of factors of schemes to deal
with the case of decomposable windows.



Converse direction is easier: if C or D fail then we can construct
acceptance domains of ‘small volume’ ↔ patches with ‘low
frequency’, so LR doesn’t hold.

Lots of small miracles and technical details needed for tidy final
result:

▶ C ⇐⇒ Γ< ⩽ Vf finite index. Lots of work needed to show
we don’t need quasi- (or almost-) canonical window, using
generalised complexity result, and showing C =⇒
‘hyperplane spanning’.

▶ Above is exactly what is needed to approximate vertices of cut
regions instead by elements of Γ<. The latter has more
structure and we can define the Diophantine condition for it.

▶ For high repetitivity, we need not just large acceptance
domains but also well-distribution of Γ<. Fortunately the
Diophantine condition gives both!

▶ One also has to develop a theory of factors of schemes to deal
with the case of decomposable windows.



Converse direction is easier: if C or D fail then we can construct
acceptance domains of ‘small volume’ ↔ patches with ‘low
frequency’, so LR doesn’t hold.

Lots of small miracles and technical details needed for tidy final
result:

▶ C ⇐⇒ Γ< ⩽ Vf finite index. Lots of work needed to show
we don’t need quasi- (or almost-) canonical window, using
generalised complexity result, and showing C =⇒
‘hyperplane spanning’.

▶ Above is exactly what is needed to approximate vertices of cut
regions instead by elements of Γ<. The latter has more
structure and we can define the Diophantine condition for it.

▶ For high repetitivity, we need not just large acceptance
domains but also well-distribution of Γ<. Fortunately the
Diophantine condition gives both!

▶ One also has to develop a theory of factors of schemes to deal
with the case of decomposable windows.



Some further thoughts / questions:

▶ Complexity / repetitivity for fractal windows?

▶ Alternative internal spaces? (such as p-adics)

▶ Relationship to quick convergence of patch frequencies /
‘sharpness’ of diffraction pattern?

Thanks for listening!



Some further thoughts / questions:

▶ Complexity / repetitivity for fractal windows?

▶ Alternative internal spaces? (such as p-adics)

▶ Relationship to quick convergence of patch frequencies /
‘sharpness’ of diffraction pattern?

Thanks for listening!


