Characterising linear repetitivity for polytopal cut and project sets

Jamie Walton University of Nottingham

Aperiodic Tilings: A Meeting and Mathematical Art Exhibition in Honour of Uwe Grimm at The Open University 29th June 2022

Tilings \rightleftharpoons Point Patterns

In Aperiodic Order we are typically interested in *long-range* features, rather than local, more cosmetic choices.

Indeed, one often interchangeably considers patterns which are **mutually locally derivable (MLD)**.

$\mathsf{Tilings} \rightleftharpoons \mathsf{Point} \; \mathsf{Patterns}$

In Aperiodic Order we are typically interested in *long-range* features, rather than local, more cosmetic choices.

Indeed, one often interchangeably considers patterns which are **mutually locally derivable** (MLD).

In particular we may interchange:

 $\mathsf{Tilings}\ \rightleftharpoons\ \mathsf{Point}\ \mathsf{Patterns}$

where, roughly,

- \rightharpoonup = Marking control points of tiles
- $\leftarrow =$ Voronoi tessellation

Delone Sets

Definition (Delone set)

 $\Lambda \subset \mathbb{R}^d$ is a **Delone set** if there exist r, R > 0 so that

 $\#\{B_r(x)\cap\Lambda\}\leq 1,\ \#\{B_R(x)\cap\Lambda\}\geq 1\ \text{ for all }x\in\mathbb{R}^d.$

i.e., Λ is 'uniformly discrete' and 'relatively dense'.

Many definitions to follow given just for Delone sets but work analogously for tilings.

Complexity and repetitivity

Definition (*r*-patches)

For $x \in \Lambda$ and $r \geq 0$, we call $P_r(x) := B_r(x) \cap \Lambda$ an *r*-patch. We identify *r*-patches $P_r(x)$ and $P_r(y)$ if $P_r(x) - x = P_r(y) - y$.

Complexity and repetitivity

Definition (*r*-patches)

For $x \in \Lambda$ and $r \ge 0$, we call $P_r(x) \coloneqq B_r(x) \cap \Lambda$ an *r*-patch. We identify *r*-patches $P_r(x)$ and $P_r(y)$ if $P_r(x) - x = P_r(y) - y$.

Definition (Complexity function)

Let $p \colon \mathbb{R}_{\geq 0} \to \mathbb{N} \cup \{\infty\}$ be the complexity function:

 $p(r) \coloneqq$ number of *r*-patches.

 Λ has **FLC** (finite local complexity) if $p(r) < \infty$ for all r.

Complexity and repetitivity

Definition (*r*-patches)

For $x \in \Lambda$ and $r \ge 0$, we call $P_r(x) \coloneqq B_r(x) \cap \Lambda$ an *r*-patch. We identify *r*-patches $P_r(x)$ and $P_r(y)$ if $P_r(x) - x = P_r(y) - y$.

Definition (Complexity function)

Let $p \colon \mathbb{R}_{\geq 0} \to \mathbb{N} \cup \{\infty\}$ be the complexity function:

 $p(r) \coloneqq$ number of *r*-patches.

 Λ has **FLC** (finite local complexity) if $p(r) < \infty$ for all r.

Definition (Repetitivity function)

For Λ FLC, let $\rho \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be the **repetitivity** function:

 $\rho(r) = \inf\{R \in \mathbb{R}_{\geq 0} \mid \text{all } r\text{-patches appear in all } R\text{-patches}\}.$

 Λ is **repetitive** if $\rho(r) < \infty$ for all r.

Linear repetitivity

So Λ is repetitive if every finite patch which appears *somewhere* in fact appears within a bounded distance of *anywhere*.

Linear repetitivity

So Λ is repetitive if every finite patch which appears *somewhere* in fact appears within a bounded distance of *anywhere*.

Linear repetitivity was proposed by Lagarias and Pleasants as a notion of "perfectly ordered quasicrystals". LR is the most repetitive a non-periodic pattern can be, and forces further properties.

Definition (Linear repetitivity)

$$\label{eq:relation} \begin{split} \Lambda \text{ is linearly repetitive if there exists some } C>0 \text{ so that} \\ \rho(r) \leq Cr \text{ for all } r \geq 1 \text{ i.e., } \rho(r) \ll r. \end{split}$$

Linear repetitivity

So Λ is repetitive if every finite patch which appears *somewhere* in fact appears within a bounded distance of *anywhere*.

Linear repetitivity was proposed by Lagarias and Pleasants as a notion of "perfectly ordered quasicrystals". LR is the most repetitive a non-periodic pattern can be, and forces further properties.

Definition (Linear repetitivity)

$$\label{eq:relation} \begin{split} \Lambda \text{ is linearly repetitive if there exists some } C>0 \text{ so that} \\ \rho(r) \leq Cr \text{ for all } r \geq 1 \text{ i.e., } \rho(r) \ll r. \end{split}$$

Linear repetitivity forces the following:

Definition (Low complexity)

We say that Λ has **low complexity** if there exists some C > 0 so that $p(r) \leq Cr^d$ for all $r \geq 1$ i.e., $p(r) \ll r^d$.

Cut and project sets. Step 1:

Cut and project sets. Step 1:

Cut and project sets

Data of the cut and project scheme:

- ▶ The total space \mathbb{E}
- The physical space $\mathbb{E}_{\vee} < \mathbb{E}$
- ▶ The internal space $\mathbb{E}_{<} < \mathbb{E}$
- The window $W \subset \mathbb{E}_{<}$
- ▶ The lattice $\Gamma < \mathbb{E}$

where $\mathbb{E} \cong \mathbb{R}^k$, dim $(\mathbb{E}_{\vee}) = d > 0$, dim $(\mathbb{E}_{<}) = n = k - d > 0$, $\mathbb{E} = \mathbb{E}_{\vee} + \mathbb{E}_{<}$, W compact with non-empty interior (today: a convex polygon).

We have the projections $\pi_{\vee} \colon \mathbb{E} \to \mathbb{E}_{\vee}$ and $\pi_{<} \colon \mathbb{E} \to \mathbb{E}_{<}$. We denote $x_{\vee} \coloneqq \pi_{\vee}(x)$ etc.

Data of the cut and project scheme:

- ▶ The total space \mathbb{E}
- The physical space $\mathbb{E}_{\vee} < \mathbb{E}$
- The internal space $\mathbb{E}_{<} < \mathbb{E}$
- The window $W \subset \mathbb{E}_{<}$
- ▶ The lattice $\Gamma < \mathbb{E}$

where $\mathbb{E} \cong \mathbb{R}^k$, $\dim(\mathbb{E}_{\vee}) = d > 0$, $\dim(\mathbb{E}_{<}) = n = k - d > 0$, $\mathbb{E} = \mathbb{E}_{\vee} + \mathbb{E}_{<}$, W compact with non-empty interior (today: a convex polygon).

We have the projections $\pi_{\vee} \colon \mathbb{E} \to \mathbb{E}_{\vee}$ and $\pi_{<} \colon \mathbb{E} \to \mathbb{E}_{<}$. We denote $x_{\vee} \coloneqq \pi_{\vee}(x)$ etc.

We make the following standard assumptions:

- 1. π_{\vee} is injective on Γ
- 2. $\pi_{<}$ is injective on Γ
- 3. $\Gamma_{<}$ is dense in $\mathbb{E}_{<}$

We have the star map $*\colon \Gamma_{\vee} \to \mathbb{E}_{<}$ defined by

$$x \mapsto x^* \coloneqq (x^\wedge)_<$$

where x^{\wedge} is the unique element of Γ with $(x^{\wedge})_{\vee} = x$.

The cut and project set is then:

$$\Lambda \coloneqq \{x \in \Gamma_{\lor} \mid x^* \in W\} \subset \mathbb{E}_{\lor}$$

i.e., projections of lattice points to the physical space which project to the window in the internal space. A cut and project scheme defines an infinite family of Delone sets, by translating the lattice, cutting with the 'strip' $S = W + \mathbb{E}_{\lor}$, then projecting to the physical space.

We only consider **regular** cut and project sets where the (translated) lattice doesn't intersect ∂S (equivalently, don't project to ∂W), as well as 'limits' of the regular patterns at the non-regular lattice translates. Then:

- 1. these Delone sets are all **locally indistinguishable** from each other (they all have the same finite patches)
- 2. they're all non-periodic but repetitive

	substitution	с&р
low complexity:		
LR:		
pure point diffraction:		

 \checkmark = yes, given 'standard restrictions'

	substitution	с&р
low complexity:	\checkmark	A
LR:	\checkmark	
pure point diffraction:		\checkmark

 \checkmark = yes, given 'standard restrictions'

A: Henna's talk! We can answer for all polytopal windows: complexity exponent can be calculated from ranks of intersection of supporting hyperplanes with $\Gamma_<$

	substitution	с&р
low complexity:	\checkmark	A
LR:	\checkmark	B
pure point diffraction:		\checkmark

 \checkmark = yes, given 'standard restrictions'

A: Henna's talk! We can answer for all polytopal windows: complexity exponent can be calculated from ranks of intersection of supporting hyperplanes with $\Gamma_<$

B: In 5 minutes! (for polytopal windows)

	substitution	с & р
low complexity:	\checkmark	A
LR:	\checkmark	B
pure point diffraction:	C	\checkmark

 \checkmark = yes, given 'standard restrictions'

A: Henna's talk! We can answer for all polytopal windows: complexity exponent can be calculated from ranks of intersection of supporting hyperplanes with $\Gamma_<$

B: In 5 minutes! (for polytopal windows)

C: depends, and is hard. In 1d we have the 'Pisot Conjecture'

Complexity and repetitivity of polytopal cut and project sets

We will assume that W is a convex polytope, so

$$W = \bigcap_{H^+ \in \mathscr{H}^+} H^+,$$

where \mathscr{H}^+ is a finite (and irredundant) set of closed half-spaces in $\mathbb{E}_{<}$. Associated set of (affine) hyperplanes is denoted \mathscr{H} .

Complexity and repetitivity of polytopal cut and project sets

We will assume that W is a convex polytope, so

$$W = \bigcap_{H^+ \in \mathscr{H}^+} H^+,$$

where \mathscr{H}^+ is a finite (and irredundant) set of closed half-spaces in $\mathbb{E}_{<}$. Associated set of (affine) hyperplanes is denoted \mathscr{H} .

Definition (Weakly homogeneous schemes)

The c&p scheme is called **weakly homogeneous** if there is some 'origin' $o \in \mathbb{E}_{<}$ so that, for each $H \in \mathcal{H}$, there is some $\gamma \in \Gamma$ and $n \in \mathbb{N}$ with

$$o \in H + \frac{\gamma_{<}}{n}.$$

For a polytopal cut and project scheme, the growth rate of $p(\boldsymbol{r})$ is determined by the pair

$$(\mathscr{H}_0, \Gamma_{<}),$$

where $\mathscr{H}_0 = \{H - H \mid H \in \mathscr{H}\} =$ the set of codim 1 subspaces of $\mathbb{E}_{<}$ parallel to the supporting hyperplanes of the window.

Whether the patterns are LR or not is also determined by $(\mathscr{H}_0, \Gamma_<)$ if the scheme is weakly homogeneous.

For a polytopal cut and project scheme, the growth rate of $p(\boldsymbol{r})$ is determined by the pair

 $(\mathscr{H}_0, \Gamma_{<}),$

where $\mathscr{H}_0 = \{H - H \mid H \in \mathscr{H}\} =$ the set of codim 1 subspaces of $\mathbb{E}_{<}$ parallel to the supporting hyperplanes of the window.

Whether the patterns are LR or not is also determined by $(\mathscr{H}_0, \Gamma_<)$ if the scheme is weakly homogeneous.

Definition (Hyperplane Stabilisers)

For $H \in \mathscr{H}_0$ let

$$\Gamma^H = \{ \gamma \in \Gamma \mid \gamma_{<} \in H \}.$$

Definition (Flags)

A subset f of exactly $n = \dim(\mathbb{E}_{<})$ elements in \mathscr{H}_{0} is called a flag if $\bigcap_{H \in f} H = \{0\}$. Let \mathscr{F} denote the set of all flags.

Theorem (Julien 2010, Koivusalo–W 2021)

The complexity function satisfies $p(r) \asymp r^{\alpha}$ where

$$\alpha \coloneqq \max_{f \in \mathscr{F}} \alpha_f, \ \alpha_f \coloneqq \sum_{H \in f} (d - \operatorname{rk}(\Gamma^H) + \beta_H), \ \text{and} \ \beta_H = \dim \left\langle \Gamma^H_{<} \right\rangle_{\mathbb{R}}.$$

In short: the number of patches of size r grows polynomially in r, with power $\alpha \in \mathbb{N}$ determined by the ranks of the stabilisers Γ^H and the dimensions of subspaces they span in $\mathbb{E}_{<}$.

Definition (Diophantine c & p scheme)

Call the scheme **Diophantine** if there exists some c>0 so that, for all non-zero $\gamma\in\Gamma$,

$$\|\gamma_{<}\| \ge c \cdot \|\gamma\|^{-\delta}$$
, where $\delta = \frac{d}{n}$

(recall: $d = \dim(\mathbb{E}_{\vee}), n = \dim(\mathbb{E}_{<})$).

The Diophantine condition depends only on $\Gamma_<$ in $\mathbb{E}_<$, up to linear isomorphism.

Definition (Diophantine c & p scheme)

Call the scheme **Diophantine** if there exists some c > 0 so that, for all non-zero $\gamma \in \Gamma$,

$$\|\gamma_{<}\| \ge c \cdot \|\gamma\|^{-\delta}$$
, where $\delta = \frac{d}{n}$

(recall: $d = \dim(\mathbb{E}_{\vee}), n = \dim(\mathbb{E}_{<})$).

The Diophantine condition depends only on $\Gamma_<$ in $\mathbb{E}_<$, up to linear isomorphism.

Example

For d = n = 1, up to linear isomorphism,

$$(\Gamma_{<}, \mathbb{E}_{<}) \cong (\mathbb{Z} + \alpha \mathbb{Z}, \mathbb{R}),$$

for α irrational. The scheme is Diophantine $\iff \alpha$ is badly approximable \iff continued fraction expansion of α has bounded entries.

We denote:

 $\mathbf{C}=$ Low complexity i.e., $p(r)\ll r^d$ for one (equivalently any) c & p set generated by the scheme

 $\mathbf{D} = \mathsf{The} \mathsf{ scheme} \mathsf{ is Diophantine}$

 ${\bf LR}={\rm Linear}$ repetitivity i.e., $\rho(r)\ll r$ for one (equivalently any) c & p set generated by the scheme

We denote:

 $\mathbf{C}=$ Low complexity i.e., $p(r)\ll r^d$ for one (equivalently any) c & p set generated by the scheme

 $\mathbf{D} = \mathsf{The} \mathsf{ scheme} \mathsf{ is Diophantine}$

 ${\bf LR}={\rm Linear}$ repetitivity i.e., $\rho(r)\ll r$ for one (equivalently any) c & p set generated by the scheme

Theorem (Koivusalo–W 2022)

For an indecomposable and weakly homogeneous polytopal cut and project scheme, TFAE:

Theorem (Koivusalo–W 2022)

For an indecomposable and weakly homogeneous polytopal cut and project scheme, TFAE:

C and D

Notes:

- 1. C and D determined just by the pair $(\mathscr{H}_0,\Gamma_<)$
- 'indecomposable' means the window isn't a product of lower dimensional polytopal windows (a 'prism'). May be dropped by checking condition for a 'factorisation'
- 3. theorem fails if 'weakly homogeneous' is dropped (but weakly homogeneous isn't necessary for LR)
- 4. 'convex polytopal' can be weakened to 'polytopal' (don't even need W connected) [Koivusalo–W, in preparation]

Theorem (Koivusalo–W 2022)

For an indecomposable and weakly homogeneous polytopal cut and project scheme, TFAE:

C and D

Notes:

- 1. C and D determined just by the pair $(\mathscr{H}_0,\Gamma_<)$
- 'indecomposable' means the window isn't a product of lower dimensional polytopal windows (a 'prism'). May be dropped by checking condition for a 'factorisation'
- 3. theorem fails if 'weakly homogeneous' is dropped (but weakly homogeneous isn't necessary for LR)
- 4. 'convex polytopal' can be weakened to 'polytopal' (don't even need W connected) [Koivusalo–W, in preparation]

Class covered includes: canonical cut and project sets, Sturmian sequences, Ammann–Beenker tilings, Penrose tilings*, 'cubical windows', generalising [Haynes–Koivusalo–W 2018]

Both main results come down to consideration of **acceptance domains** of patches: how many there are, and what size they are.

Both main results come down to consideration of **acceptance domains** of patches: how many there are, and what size they are.

1.
$$z \in \Lambda \iff z^* \in W$$

2. $z + x \in \Lambda \iff z^* + x^* \in W \iff z^* \in W - x^*$
3. $z + y \notin \Lambda \iff z^* + y^* \notin W \iff z^* \in W^c - y^*$

Both main results come down to consideration of **acceptance domains** of patches: how many there are, and what size they are.

1.
$$z \in \Lambda \iff z^* \in W$$

2. $z + x \in \Lambda \iff z^* + x^* \in W \iff z^* \in W - x^*$
3. $z + y \notin \Lambda \iff z^* + y^* \notin W \iff z^* \in W^c - y^*$

x, y are projections of lattices points a, $b \in \Gamma$. They have relevance to the r-patches only if:

1.
$$||a_{\vee}||, ||b_{\vee}|| \le r$$

2. $a_{<}, b_{<} \in W - W$.

Acceptance domains of r-patches determined as corresponding intersection of $W-x^*$ and W^c-y^* over such lattice points

1. It's easier to count **cut regions** defined by cutting W with $\Gamma_{<}$ translates of full hyperplanes. Show these cut \asymp same number of regions. These can be counted instead by those 'vertices' \mathcal{V}_f (for flags f, of hyperplanes intersecting to points) inside the window.

1. It's easier to count **cut regions** defined by cutting W with $\Gamma_{<}$ translates of full hyperplanes. Show these cut \asymp same number of regions. These can be counted instead by those 'vertices' \mathcal{V}_{f} (for flags f, of hyperplanes intersecting to points) inside the window.

2. So fewer patches \leftrightarrow fewer hyperplane cuts \leftrightarrow larger ranks of Γ^H (translates of H in Γ^H are equal) \rightsquigarrow complexity formula.

1. It's easier to count **cut regions** defined by cutting W with $\Gamma_{<}$ translates of full hyperplanes. Show these cut \asymp same number of regions. These can be counted instead by those 'vertices' \mathcal{V}_{f} (for flags f, of hyperplanes intersecting to points) inside the window.

2. So fewer patches \leftrightarrow fewer hyperplane cuts \leftrightarrow larger ranks of Γ^H (translates of H in Γ^H are equal) \rightsquigarrow complexity formula.

3. \mathcal{V}_f is a group for each flag f. It turns out: **C** $\iff \Gamma_{<} \leqslant \mathcal{V}_f$ is finite index for each $f \in \mathscr{F}$

1. It's easier to count **cut regions** defined by cutting W with $\Gamma_{<}$ translates of full hyperplanes. Show these cut \asymp same number of regions. These can be counted instead by those 'vertices' \mathcal{V}_{f} (for flags f, of hyperplanes intersecting to points) inside the window.

2. So fewer patches \leftrightarrow fewer hyperplane cuts \leftrightarrow larger ranks of Γ^H (translates of H in Γ^H are equal) \rightsquigarrow complexity formula.

3. \mathcal{V}_f is a group for each flag f. It turns out: **C** $\iff \Gamma_{<} \leqslant \mathcal{V}_f$ is finite index for each $f \in \mathscr{F}$

4. Thus, if ${\bf D}$ also holds, vertices stay 'far apart' \rightsquigarrow large acceptance domains.

1. It's easier to count **cut regions** defined by cutting W with $\Gamma_{<}$ translates of full hyperplanes. Show these cut \asymp same number of regions. These can be counted instead by those 'vertices' \mathcal{V}_{f} (for flags f, of hyperplanes intersecting to points) inside the window.

2. So fewer patches \leftrightarrow fewer hyperplane cuts \leftrightarrow larger ranks of Γ^H (translates of H in Γ^H are equal) \rightsquigarrow complexity formula.

3. \mathcal{V}_f is a group for each flag f. It turns out: **C** $\iff \Gamma_{<} \leqslant \mathcal{V}_f$ is finite index for each $f \in \mathscr{F}$

4. Thus, if ${\bf D}$ also holds, vertices stay 'far apart' \rightsquigarrow large acceptance domains.

5. Moreover, $\mathbf{D} \implies r$ -balls of Γ project to $\mathbb{E}_{<}$ without large gaps ('transference'). So don't need to travel far from any point of Λ to hit each acceptance domain, since each is 'large' $\rightsquigarrow \mathbf{LR}$.

Lots of small miracles and technical details needed for tidy final result:

C ⇐⇒ Γ_< ≤ V_f finite index. Lots of work needed to show we don't need quasi- (or almost-) canonical window, using generalised complexity result, and showing C ⇒ 'hyperplane spanning'.

- C ↔ Γ_< ≤ V_f finite index. Lots of work needed to show we don't need quasi- (or almost-) canonical window, using generalised complexity result, and showing C ⇒ 'hyperplane spanning'.
- Above is exactly what is needed to approximate vertices of cut regions instead by elements of $\Gamma_{<}$. The latter has more structure and we can define the Diophantine condition for it.

- C ↔ Γ_< ≤ V_f finite index. Lots of work needed to show we don't need quasi- (or almost-) canonical window, using generalised complexity result, and showing C ⇒ 'hyperplane spanning'.
- Above is exactly what is needed to approximate vertices of cut regions instead by elements of Γ_<. The latter has more structure and we can define the Diophantine condition for it.
- For high repetitivity, we need not just large acceptance domains but also well-distribution of Γ_<. Fortunately the Diophantine condition gives both!

- C ↔ Γ_< ≤ V_f finite index. Lots of work needed to show we don't need quasi- (or almost-) canonical window, using generalised complexity result, and showing C ⇒ 'hyperplane spanning'.
- Above is exactly what is needed to approximate vertices of cut regions instead by elements of Γ_<. The latter has more structure and we can define the Diophantine condition for it.
- For high repetitivity, we need not just large acceptance domains but also well-distribution of Γ_<. Fortunately the Diophantine condition gives both!
- One also has to develop a theory of factors of schemes to deal with the case of decomposable windows.

Some further thoughts / questions:

- Complexity / repetitivity for fractal windows?
- Alternative internal spaces? (such as *p*-adics)
- Relationship to quick convergence of patch frequencies / 'sharpness' of diffraction pattern?

Some further thoughts / questions:

- Complexity / repetitivity for fractal windows?
- Alternative internal spaces? (such as *p*-adics)
- Relationship to quick convergence of patch frequencies / 'sharpness' of diffraction pattern?

Thanks for listening!